Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.1.4) In equation 214 the lagging phase ϕ βx is caused by the delay in - фото 50

In equation (2.1.4), the lagging phase ϕ = βx is caused by the delay in oscillation at the receiving end. The medium supporting the wave motion is assumed to be lossless. The wave variable v(t, x) is a doubly periodic function of both time and space coordinates as shown in Fig (2.2a and b), respectively.

The temporal period, i.e. time‐period T is related to the angular frequency ω as follows:

Introduction To Modern Planar Transmission Lines - изображение 51

Figure 2.2 Double periodic variations of wave motion.

(2.1.5) Introduction To Modern Planar Transmission Lines - изображение 52

where f is the frequency in Hz (Hertz), i.e. the number of cycles per sec. The wavelength (λ) describes the spatial period , i.e. space periodicity. It is related to the phase‐shift constant (or phase constant) , i.e. the propagation constant β, as follows:

(2.1.6) Introduction To Modern Planar Transmission Lines - изображение 53

The wave motion or velocity of a monochromatic wave (the wave of a single frequency) is the motion of its wavefront . For the 3D wave motion in an isotropic space, the wavefront is a surface of the constant phase. In the case of the 1D wave motion, the wavefront is a line, whereas, for the 2D wave motion on an isotropic surface, the wavefront is a circle.

Figure (2.3)shows the peak point P at the wavefront of the ID wave. The motion of a constant phase surface is known as its phase velocity v p. Thus, the peak point P at the wavefront has moved to a new location P ′in such a way that phase of the propagating wave remains constant, i.e. ωt − βx = constant. On differentiating the constant phase with respect to time t, the expression for the phase velocity is obtained:

Introduction To Modern Planar Transmission Lines - изображение 54

Figure 2.3 Wave motion as a motion of constant phase surface. It is shown as the moving point P.

(2.1.7) Introduction To Modern Planar Transmission Lines - изображение 55

In a nondispersive medium, the phase velocity of a wave is independent of frequency, i.e. the waves of all frequencies travel at the same velocity. Figure (2.4)shows the nondispersive wave motion on the (ω − β) diagram. It is a linear graph . The slope of the point Q on the dispersion diagram subtends an angle θ at the origin that corresponds to the phase velocity of a propagating wave,

(2.1.8) Introduction To Modern Planar Transmission Lines - изображение 56

Thus, for a frequency‐independent nondispersive wave, the phase constant is a linear function of angular frequency.

(2.1.9) Introduction To Modern Planar Transmission Lines - изображение 57

The dispersive nature of the 1D wave motion is further discussed in sections ( 3.3) and ( 3.4) of the chapter 3. The phase velocity in a dispersive medium is usually frequency‐dependent. It is known as the temporal dispersion . In some cases, the phase velocity could also depend on wavevector (β, or k). It is known as spatial dispersion . The spatial dispersion is discussed in the subsection (21.1.1) of the chapter 21. The dispersion diagrams of the wave propagation in the isotropic and anisotropic media are further discussed in the section (4.7)of the chapter 4, and also in the section (5.2)of chapter 5.

Figure 24 The ωβ dispersion diagram of nondispersive wave The - фото 58

Figure 2.4 The ω‐β dispersion diagram of nondispersive wave.

The one‐dimensional (1D) wave travels both in the forward and in the backward directions. It can have any arbitrary shape. In general, the 1D wave propagation can be described by the following wave function , known as the general wave equation :

(2.1.10) On taking the secondorder partial derivative of the wave function ψt x with - фото 59

On taking the second‐order partial derivative of the wave function ψ(t, x) with respect to space‐time coordinate x and t, the 1D second‐order partial differential equation (PDE) of the wave equation is obtained. Similarly, wave functions ψ(t, x, y) and ψ(t, x, y, z) are solutions of two‐dimensional (2D) and three‐dimensional (3D) wave equations supported by the surface and free space medium, respectively. These PDEs are summarized below:

(2.1.11) The dispersion diagram of the 2D wave propagation over the x y surface is - фото 60

The dispersion diagram of the 2D wave propagation over the (x, y) surface is obtained by revolving the slant line of Fig (2.4)around the ω‐axis with propagation constants β x, β yin the x ‐ and y ‐direction. It is discussed in subsection ( 4.7.4) of chapter 4.

2.1.2 Circuit Model of Transmission Line

A physical transmission line, supporting the voltage/current wave, can be modeled by the lumped R, L, C, G components, i.e. the resistance, inductance, capacitance, and conductance per unit length ( p.u.l .), respectively. The two‐conductor transmission line can acquire many physical forms. A few of these forms are shown in Fig (2.5). The lines as shown in Fig (2.5a–c)support the wave propagation in the transverse electro magnetic mode, i.e. in the TEM‐mode; while Fig ( 2.5 c) shows the quasi‐TEM mode‐supporting microstrip . For TEM mode wave propagation, the electric field and magnetic field are normal to each other and also normal to the direction of wave propagation. For the TEM mode, there is no field component along the direction of propagation. However, the quasi‐TEM mode also has component of weak fields along the longitudinal direction of wave propagation. The quasi‐TEM mode is a hybrid mode discussed in the subsection (7.1.4) of chapter 7.

All TEM mode supporting transmission lines can be represented by a parallel two‐wire transmission line shown in Fig (2.6a). A transmission line is a 1D wave supporting structure. Its cross‐sectional dimension is much less than λ/4; otherwise, its TEM nature is changed. The longitudinal dimension can have any value, from a fraction of a wavelength to several wavelengths. The mode theory of the electromagnetic (EM) wave propagation is further discussed in chapter 7.

Figure 25 Crosssection of a few twoconductor transmission lines Figure - фото 61

Figure 2.5 Cross‐section of a few two‐conductor transmission lines.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x