William Kinlaw - Asset Allocation

Здесь есть возможность читать онлайн «William Kinlaw - Asset Allocation» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Asset Allocation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Asset Allocation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover a masterful exploration of the fallacies and challenges of asset allocation In
—the newly and substantially revised
of
—accomplished finance professionals William Kinlaw, Mark P. Kritzman, and David Turkington deliver a robust and insightful exploration of the core tenets of asset allocation.
Drawing on their experience working with hundreds of the world’s largest and most sophisticated investors, the authors review foundational concepts, debunk fallacies, and address cutting-edge themes like factor investing and scenario analysis. The new edition also includes references to related topics at the end of each chapter and a summary of key takeaways to help readers rapidly locate material of interest.
The book also incorporates discussions of:
The characteristics that define an asset class, including stability, investability, and similarity The fundamentals of asset allocation, including definitions of expected return, portfolio risk, and diversification Advanced topics like factor investing, asymmetric diversification, fat tails, long-term investing, and enhanced scenario analysis as well as tools to address challenges such as liquidity, rebalancing, constraints, and within-horizon risk. Perfect for client-facing practitioners as well as scholars who seek to understand practical techniques,
is a must-read resource from an author team of distinguished finance experts and a forward by Nobel prize winner Harry Markowitz.

Asset Allocation — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Asset Allocation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We combine our objective and constraints to form the following objective function:

(2.3) The first term of Equation 23up to the third plus sign equals portfolio - фото 13

The first term of Equation 2.3up to the third plus sign equals portfolio variance, the quantity to be minimized. The next two terms that are multiplied by картинка 14represent the two constraints. The first constraint ensures that the weighted average of the stock and bond returns equals the portfolio's expected return. The Greek letter lambda ( картинка 15) is called a Lagrange multiplier. It is a variable introduced to facilitate optimization when we face constraints, and it does not easily lend itself to economic interpretation. The second constraint guarantees that the portfolio is fully invested. Again, lambda serves to facilitate a solution.

Our objective function has four unknown values: (i) the percentage of the portfolio to be allocated to stocks, (ii) the percentage to be allocated to bonds, (iii) the Lagrange multiplier for the first constraint, and (iv) the Lagrange multiplier for the second constraint. To minimize portfolio risk given our constraints, we must take the partial derivative of the objective function with respect to each asset weight and with respect to each Lagrange multiplier and set it equal to zero, as shown below:

(2.4) 25 26 27 - фото 16

(2.5) 26 27 Given assumptions for expected ret - фото 17

(2.6) 27 Given assumptions for expected return standard deviation and - фото 18

(2.7) Given assumptions for expected return standard deviation and correlation - фото 19

Given assumptions for expected return, standard deviation, and correlation (which we specify later), we wish to find the values of картинка 20and картинка 21associated with different values of картинка 22, the portfolio's expected return. The values for картинка 23and are merely mathematical byproducts of the solution Next we express Equations - фото 24are merely mathematical by-products of the solution.

Next, we express Equations 2.4, 2.5, 2.6, and 2.7in matrix notation, as follows:

(2.8) We next substitute estimates of expected return standard deviation and - фото 25

We next substitute estimates of expected return, standard deviation, and correlation for domestic equities and Treasury bonds shown earlier in Tables 2.1and 2.2.

With these assumptions, we rewrite the coefficient matrix as follows:

Its inverse equals Because the constant vector includes a variable for the - фото 26

Its inverse equals:

Because the constant vector includes a variable for the portfolios expected - фото 27

Because the constant vector includes a variable for the portfolio's expected return, we obtain a vector of formulas rather than values when we multiply the inverse matrix by the vector of constants, as follows:

(2.9) We are interested only in the first two formulas The first formula yields the - фото 28

We are interested only in the first two formulas. The first formula yields the percentage to be invested in stocks in order to minimize risk when we substitute a value for the portfolio's expected return. The second formula yields the percentage to be invested in bonds. Table 2.3shows the allocations to stocks and bonds that minimize risk for portfolio expected returns ranging from 9% to 12%.

TABLE 2.3Optimal Allocation to Stocks and Bonds

Target Portfolio Return 9% 10% 11% 12%
Stock Allocation 25% 50% 75% 100%
Bond Allocation 75% 50% 25% 0%

THE SHARPE ALGORITHM

In 1987, William Sharpe published an algorithm for portfolio optimization that has the dual virtues of accommodating many real-world complexities while appealing to our intuition. 8 We begin by defining an objective function that we wish to maximize:

(2.10) Asset Allocation - изображение 29

In Equation 2.8, картинка 30equals expected utility, картинка 31equals portfolio expected return, картинка 32equals risk aversion, and картинка 33equals portfolio variance.

Utility is a measure of well-being or satisfaction, whereas risk aversion measures how many units of expected return we are willing to sacrifice in order to reduce risk (variance) by one unit. ( Chapter 25includes more detail about utility and risk aversion.) By maximizing this objective function, we maximize expected return minus a quantity representing our aversion to risk times risk (as measured by variance).

Again, assume we have a portfolio consisting of stocks and bonds. Substituting the equations for portfolio expected return and variance ( Equations 2.1and 2.2), we rewrite the objective function as follows:

(2.11) This objective function measures the expected utility or satisfaction we derive - фото 34

This objective function measures the expected utility or satisfaction we derive from a combination of expected return and risk, given our attitude toward risk. Its partial derivative with respect to each asset weight, shown in Equations 2.12and 2.13, represents the marginal utility of each asset class:

(2.12) 213 These marginal utilities measure how much we increase or decrease - фото 35

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Asset Allocation»

Представляем Вашему вниманию похожие книги на «Asset Allocation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Asset Allocation»

Обсуждение, отзывы о книге «Asset Allocation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x