Unmanned Aerial Vehicles for Internet of Things (IoT)

Здесь есть возможность читать онлайн «Unmanned Aerial Vehicles for Internet of Things (IoT)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Unmanned Aerial Vehicles for Internet of Things (IoT): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Unmanned Aerial Vehicles for Internet of Things (IoT)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The 15 chapters in this book explore the theoretical as well as a number of technical research outcomes on all aspects of UAVs. UAVs has widely differing applications such as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. The advantages of using UAVs are countless and have led the way for the full integration of UAVs, as intelligent objects into the IoT system.
The book covers cover such subjects as:
Efficient energy management systems in UAV based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety.

Unmanned Aerial Vehicles for Internet of Things (IoT) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Unmanned Aerial Vehicles for Internet of Things (IoT)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

23. Hayajneh, A.M., Zaidi, S.A.R., McLernon, D.C., Ghogho, M., Optimal dimensioning and performance analysis of drone-based wireless communications, in: Proc. of IEEE GLOBECOM Workshops , Dec. 2016.

24. Jia, S. and Lin, Z., Modeling unmanned aerial vehicles base station in ground-to-air cooperative networks. IET Commun. , 11, 8, 1187–1194, 2017.

25. Matolak, D.W. and Sun, R., Airground channel characterization for unmanned aircraft systems part-I: Methods, measurements, and models for over-water settings. IEEE Trans. Veh. Technol. , 66, 1, 26–44, Jan. 2017.

26. Yang, Z., Zhou, L., Zhao, G., Zhou, S., Channel model in the urban environment for unmanned aerial vehicle communications, in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP) , London, U.K., p. 719, 2018.

27. Yan, C., Fu, L., Zhang, J., Wang, J., A comprehensive survey on UAV communication channel modeling. IEEE Access , 7, 107769–107792, 2019.

28. Zhou, L., Ma, H., Yang, Z., Zhou, S., Zhang, W., Unmanned Aerial Vehicle Communications: Path-Loss Modeling and Evaluation. IEEE Veh. Technol. Mag. , 15, 2, 121–128, June 2020.

29. Azari, M.M., Rosas, F., Chen, K., Pollin, S., Optimal UAV Positioning for Terrestrial-Aerial Communication in Presence of Fading. 2016 IEEE Global Communications Conference (GLOBECOM) , Washington, DC, pp. 1–7, 2016.

30. Abdel-Malek, M.A., Ibrahim, A.S., Mokhtar, M., Optimum UAV positioning for better coverage-connectivity tradeoff. IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) , Montreal, QC, pp. 1–5, 2017.

31. Munaye, Y.Y., Lin, H.P., Adege, A.B., Tarekegn, G.B., UAV Positioning for Throughput Maximization Using Deep Learning Approaches. Sensors , 19, 2775, 2019.

32. Al-Hourani, A. et al. , Coverage and rate analysis of aerial base stations. IEEE Trans. Aerosp. Electron. Syst. , 52, 6, 3077–3081, Dec. 2016.

33. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. , 20, 8, 1647–1650, Aug. 2016.

34. Newhall, W.G. and Reed, J.H., A geometric air-to-ground radio channel model, in: Proc. IEEE Military Commun. Conf. (MILCOM) , Anaheim, CA, USA, Oct. 2002, pp. 632–636.

35. Wentz, M. and Stojanovic, M., A MIMO radio channel model for low altitude air-to-ground communication systems, in: Proc. IEEE Veh. Technol. Conf. (VTC-Fall) , Boston, MA, USA, Sep. 2015, pp. 1–6.

36. Ibrahim, M. and Arslan, H., Air–ground Doppler-delay spread spectrum for dense scattering environments, in: Proc. IEEE Military Commun. Conf. (MILCOM) , Tampa, FL, USA, Oct. 2015, pp. 1661–1666.

37. Gulfam, S.M., Syed, J., Patwary, M.N., Abdel-Maguid, M., On the spatial characterization of 3-D air-to-ground radio communication channels, in: Proc. IEEE Int. Conf. Commun. (ICC) , London, U.K., Jun. 2015, pp. 2924–2930.

38. Zeng, L., Cheng, X., Wang, C.-X., Yin, X., A 3D geometry-based stochastic channel model for UAV-MIMO channels, in: Proc. IEEE Wireless Commun. Netw. Conf. (WCNC) , San Francisco, CA, USA, Mar. 2017, pp. 1–5.

39. Chetlur, V.V. and Dhillon, H.S., Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles. IEEE Trans. Commun. , 65, 10, 4543–4558, Oct. 2017.

40. Zhou, L., Yang, Z., Zhao, G., Zhou, S., Wang, C.-X., Propagation Characteristics of Air-to-Air Channels in Urban Environments, in: 2018 IEEE Global Communications Conference (GLOBECOM) [8647360] (Global Communications Conference (GLOBECOM)) , 2019.

41. Vinogradov, E., Sallouha, H., Bast, S.D., Azari, M.M., Pollin, S., Tutorial on UAV: A blue sky view on wireless communication. J. Mob. Multimedia , 14, 4, 395–468, January 2019.

42. Ahmed, N., Kanhere, S.S., Jha, S., On the importance of link characterization for aerial wireless sensor networks. IEEE Commun. Mag. , 54, 5, 52–57, May 2016.

43. Goddemeier, N. and Wietfeld, C., Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model, in: Proc. IEEE Glob. Commun. Conf. (GLOBECOM) , San Diego, CA, USA, Dec. 2015, pp. 1–5.

44. Yanmaz, E., Kuschnig, R., Bettstetter, C., Channel measurements over 802.11a-based UAV-to-ground links, in: Proc. IEEE Glob. Commun. Conf. (GLOBECOM) , Houston, TX, USA, Dec. 2011, pp. 1280–1284.

45. Yanmaz, E., Kuschnig, R., Bettstetter, C., Achieving air–ground communications in 802.11 networks with three-dimensional aerial mobility, in: Proc. IEEE INFOCOM , Turin, Italy, Apr. 2013, pp. 120–124.

46. Khawaja, A.A., Chen, Y., Zhao, N., Alouini, M.-S., Dobbins, P., A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. , 20, 4, 2804–2821, 4th Quart., 2018.

47. Zeng, Y., Lyu, J., Zhang, R., Cellular-connected UAV: Potentials, challenges and promising technologies. IEEE Wirel. Commun., 26, 1, 120–127, 2019.

48. Sharma, V., Bennis, M., Kumar, R., UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. , 20, 6, 1207–1210, 2016.

49. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Optimal transport theory for power-efficient deployment of unmanned aerial vehicles, in: Proc. of IEEE International Conference on Communications (ICC) , May 2016.

50. Galkin, B., Kibiłda, J., DaSilva, L.A., Backhaul for low-altitude UAVs in urban environments, in: Proc., International Conference on Communications (ICC) , May 2018, pp. 1–6.

51. Hourani, A., Sithamparanathan, K., Lardner, S., Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. , 3, 6, 569–572, Dec. 2014.

52. Zhang, X. and Duan, L., Fast deployment of UAV networks for optimal wireless coverage. IEEE Trans. Mob. Comput. , 18, 3, 588–601, 2019.

53. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Trans. Wireless Commun. , 16, 11, 7574–7589, Nov. 2017.

54. Schouwenaars, T. et al. , Mixed Integer Programming for Multi-Vehicle Path Planning. Proc. Euro. Control Conf , pp. 2603–08, 2001.

55. Wu, Q., Zeng, Y., Zhang, R., Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans. Wirel. Commun., 17, 3, 2109–2121, 2018.

56. Jiang, F. and Swindlehurst, A.L., Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun. , 30, 5, 993–1005, June 2012.

57. Zeng, Y., Zhang, R., Lim, T.J., Throughput maximization for UAV enabled mobile relaying systems. IEEE Trans. Commun. , 64, 12, 4983–4996, Dec. 2016.

58. Franco, C.D. and Buttazzo, G., Energy-aware coverage path planning of UAVs, in: Proc. of IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) , Vila Real, Portugal, April 2015, pp. 111–117.

59. Grøtli, E.I. and Johansen, T.A., Path planning for UAVs under communication constraints using splat! and milp. J. Intell. Robot. Syst. , 65, 1–4, 265–282, 2012.

60. Tisdale, J., Kim, Z., Hedrick, J.K., Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. , 16, 2, 35–42, 2009.

61. Han, Z., Swindlehurst, A.L., Liu, K., Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles. IEEE Trans. Veh. Technol. , 58, 7, 3533–3546, Dec. 2009.

62. Chen, J. and Gesbert, D., Optimal Positioning of Flying Relays for Wireless Networks: A LOS Map Approach. Proc. IEEE Int’l. Conf. Commun. (ICC) , May, 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Unmanned Aerial Vehicles for Internet of Things (IoT)»

Представляем Вашему вниманию похожие книги на «Unmanned Aerial Vehicles for Internet of Things (IoT)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Unmanned Aerial Vehicles for Internet of Things (IoT)»

Обсуждение, отзывы о книге «Unmanned Aerial Vehicles for Internet of Things (IoT)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x