1 Chapter 2Table 2.1. Comparison between different GSP-based approaches to graph learning. Table from (Dong et al. 2019) with permission
2 Chapter 4Table 4.1. DCTs/DSTs corresponding to ¯ with different vertex weights Table 4.2. Comparison of KLT, S-GFT and NS-GFT with RDOT scheme in terms of BD-rate ( % bitrate reduction) with respect to the DCT. Smaller (negative) BD-rates mean better compressionTable 4.3. Comparison of KLT, S-GFT and NS-GFT for coding of different prediction modes in terms of BD-rate with respect to the DCT. Smaller (negative) BD-rates mean better compression Table 4.4. The contribution of GL-GFT and EA-GFT in terms of BD-rate with respect to the DCT. Smaller (negative) BD-rates mean better compression
3 Chapter 6Table 6.1. Property comparison of different graph Laplacians Table 6.2. Comparison with different graph variants in PSNR(dB) at QF = 5
4 Chapter 7Table 7.1. Classification accuracy (%) on the ModelNet40 dataset
5 Chapter 9Table 9.1. Classification error rate (%) for the CIFAR10 dataset for different labeling ratios (%) Table 9.2. Classification error rate (%) for the CIFAR10 dataset using sufficient training data under different label noise levels
6 Chapter 10Table 10.1. Mean F1 score weighted by class frequency on Sydney Urban Objects dataset (De Deuge et al. 2013) Table 10.2. Mean class accuracy (respectively, mean instance accuracy) on ModelNet datasets (Wu et al. 2015) Table 10.3. Part segmentation results on ShapeNet part dataset (Yi et al. 2016). The results show the mean computed for all classes; for more detailed results, we refer the reader to (Wang et al. 2019) Table 10.4. Natural image denoising results. The evaluation metric is PSNR (dB) Table 10.5. Quantitative comparisons Table 10.6. Completion error for synthetic range scans.
1 Cover
2 Table of Contents
3 Title Page SCIENCES Image , Field Director – Laure Blanc-Feraud Compression, Coding and Protection of Images and Videos , Subject Head – Christine Guillemot
4 Copyright First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com © ISTE Ltd 2021 The rights of Gene Cheung and Enrico Magli to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2021932054 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78945-028-6 ERC code: PE7 Systems and Communication Engineering PE7_7 Signal processing
5 Introduction to Graph Spectral Image Processing
6 Begin Reading
7 List of Authors
8 Index
9 End User License Agreement
1 v
2 iii
3 iv
4 xi
5 xii
6 xiii
7 xiv
8 xv
9 xvi
10 xvii
11 1
12 3
13 4
14 5
15 6
16 7
17 8
18 9
19 10
20 11
21 12
22 13
23 14
24 15
25 16
26 17
27 18
28 19
29 20
30 21
31 22
32 23
33 24
34 25
35 26
36 27
37 28
38 29
39 31
40 32
41 33
42 34
43 35
44 36
45 37
46 38
47 39
48 40
49 41
50 42
51 43
52 44
53 45
54 46
55 47
56 48
57 49
58 50
59 51
60 52
61 53
62 54
63 55
64 56
65 57
66 58
67 59
68 60
69 61
70 63
71 64
72 65
73 66
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 75
82 76
83 77
84 78
85 79
86 80
87 81
88 82
89 83
90 84
91 85
92 86
93 87
94 88
95 89
96 90
97 91
98 92
99 93
100 94
101 95
102 96
103 97
104 98
105 99
106 100
107 101
108 102
109 103
110 104
111 105
112 106
113 107
114 108
115 109
116 110
117 111
118 112
119 113
120 114
121 115
122 116
123 117
124 118
125 119
126 120
127 121
128 122
129 123
130 124
131 125
132 126
133 127
134 128
135 129
136 130
137 131
138 132
139 133
140 134
141 135
142 136
143 137
144 138
145 139
146 140
147 141
148 142
149 143
150 144
151 145
152 146
153 147
154 148
155 149
156 150
157 151
158 152
159 153
160 154
161 155
162 156
163 157
164 158
165 159
166 160
167 161
168 162
169 163
170 164
171 165
172 166
173 167
174 168
175 169
176 170
177 171
178 172
179 173
180 174
181 175
182 176
183 177
184 178
185 179
186 180
187 181
188 182
189 183
190 184
191 185
192 186
193 187
194 188
195 189
196 190
197 191
198 192
199 193
200 194
201 195
202 196
203 197
204 198
205 199
206 200
207 201
208 202
209 203
210 204
211 205
212 206
213 207
214 208
215 209
216 210
217 211
218 212
219 213
220 214
221 215
222 216
223 217
224 218
225 219
226 221
227 222
228 223
229 224
230 225
231 226
232 227
233 228
234 229
235 230
236 231
237 232
238 233
239 234
240 235
241 236
242 237
243 238
244 239
245 241
246 242
247 243
248 244
249 245
250 246
251 247
252 248
253 249
254 250
255 251
256 252
257 253
258 254
259 255
260 256
261 257
262 258
263 259
264 260
265 261
266 262
267 263
268 264
269 265
270 266
271 267
272 268
273 269
274 270
275 271
276 272
277 273
278 274
279 275
280 277
281 278
282 279
283 280
284 281
285 282
286 283
287 284
288 285
289 286
290 287
291 288
292 289
293 290
294 291
295 292
296 293
297 294
298 295
299 296
300 297
301 299
302 300
303 301
304 302
305 303
SCIENCES
Image , Field Director – Laure Blanc-Feraud
Compression, Coding and Protection of Images and Videos , Subject Head – Christine Guillemot
Graph Spectral Image Processing
Читать дальше