Computational Intelligence and Healthcare Informatics

Здесь есть возможность читать онлайн «Computational Intelligence and Healthcare Informatics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Intelligence and Healthcare Informatics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Intelligence and Healthcare Informatics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

AI techniques are being successfully used in the fields of health to increase the efficacy of therapies and avoid the risks of false diagnosis, therapeutic decision-making, and outcome prediction in many clinical cases, thanks to the rapid advancement of technology. The acquisition, analysis, and application of a vast amount of information required to solve complex problems is a challenge for modern health therapies.
The 21 chapters in this integrate several aspects of computational intelligence like machine learning and deep learning from diversified perspectives. The purpose of the book is to endow to different communities with their innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modeling, advanced deployment, case studies, analytical results, computational structuring and significance progress in healthcare applications.

Computational Intelligence and Healthcare Informatics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Intelligence and Healthcare Informatics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5. Deo, R.C., Machine Learning in Medicine. Circulation , 132, 20, 1920–1930, 2015.

6. Kannel, W.B., Doyle, J.T., McNamara, P.M., Quickenton, P., Gordon, T., Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation , 51, 606–613, 1975, [PubMed] [Google Scholar].

7. Lip, G.Y.H., Nieuwlaat, R., Pisters, R., Lane, D.A., Crijns, H.J.G.M., Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest , 137, 263–272, 2010, [PubMed] [Google Scholar].

8. O’Mahony, C., Jichi, F., Pavlou, M., Monserrat, L., Anastasakis, A., Rapezzi, C., Biagini, E., Gimeno, J.R., Limongelli, G., McKenna, W.J., Omar, R.Z., Elliott, P.M., A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur. Heart J ., 35, 2010–2020, 2014, [PubMed] [Google Scholar].

9. National Research Council (US), Committee on A Framework for Developing a New Taxonomy of Disease, in: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease , National Academies Press (US), Washington (DC), 2011, [PubMed] [Google Scholar].

10. Woodruff, P.G., Modrek, B., Choy, D.F., Jia, G., Abbas, A.R., Ellwanger, A., Koth, L.L., Arron, J.R., Fahy, J.V., T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med ., 180, 388–395, 2009, [PMC free article] [PubMed] [Google Scholar].

11. Corren, J., Lemanske, R.F., Hanania, N.A., Korenblat, P.E., Parsey, M.V., Arron, J.R., Harris, J.M., Scheerens, H., Wu, L.C., Su, Z., Mosesova, S., Eisner, M.D., Bohen, S.P., Matthews, J.G., Lebrikizumab treatment in adults with asthma. N. Engl. J. Med ., 365, 1088–1098, 2011, [PubMed] [Google Scholar].

12. Laine, S. and Aila, T., Temporal ensembling for semi-supervised learning, in: International Conference on Learning Representations , 2017.

13. Cheplygina, V., d. Bruijne, M., Pluim, J.P.W., Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis , 54, 280–296, 2019.

14. Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D., Semisupervised learning for network-based cardiac mr image segmentation, in: Medical Image Computing and Comput.-Assisted Intervention , pp. 253–260, Springer, Heidelberg, 2017.

15. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z., Deep adversarial networks for biomedical image segmentation utilizing unannotated images, in: Medical Image Computing and Comput.-Assisted Intervention , pp. 408–416, Springer, 2017.

16. Sun, W., Tseng, T.B., Zhang, J., Qian, W., Computerized breast cancer analysis system using-three stage semi-supervised learning method. Comput. Methods Programs Biomed ., 135, 77–88, 2016.

17. Xia, Y., Liu, F., Yang, D., Cai, J., Yu, L., Zhu, Z., Xu, D., Yuille, A., Roth, H., 3d semi-supervised learning with uncertainty-aware multiview co-training, in: IEEE Winter Conf. Appl. Comput. Vis ., 2020.

18. Zhao, Y., Zeng, D., Socinski, M.A., Kosorok, M.R., Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics , 67, 4, 1422–33, 2011 Dec.

19. Pineau, J., Guez, A., Vincent, R., Panuccio, G., Avoli, M., Treating epilepsy via adaptive neurostimulation: a reinforcement learning approach. Int. J. Neural Syst ., 19, 4, 227–40, 2009.

20. Liu, Y., Logan, B., Liu, N., Xu, Z., Tang, J., Wang, Y., Deep reinforcement learning for dynamic treatment regimes on medical registry data. 2017 IEEE International Conference on Healthcare Informatics (ICHI) , 2017 Aug., pp. 380–5.

21. Raghu, A., Komorowski, M., Ahmed, I., Celi, L.A., Szolovits, P., Ghassemi, M., Deep reinforcement learning for sepsis treatment. CoRR , 2017, abs/1711.09602.

22. https://news.stanford.edu/2017/01/25/artificial-intelligence-used-identify-skin-cancer(dated: 13-09-2020)

23. Gulshan, V., Peng, L., Coram, M. et al ., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA , 316, 22, 2402–2410, 2016.

24. Dash, S.S., Big data in healthcare: management, analysis and future prospects. J. Big Data , 6 , 54, 2019.

25. Johnston, L.R. and P.L., Suboptimal response to clopidogrel and the effect of prasugrel in acute coronary syndromes. Int. J. Cardiol ., 995–999, 2013.

26. Sean Chia, J.H., SAR by kinetics for drug discovery in protein misfolding diseases. PNAS , 2018.

1 *Corresponding author: nahidsami187@gmail.com

Part II MEDICAL DATA PROCESSING AND ANALYSIS

2

Thoracic Image Analysis Using Deep Learning

Rakhi Wajgi1*, Jitendra V. Tembhurne2 and Dipak Wajgi2

1Department of Computer Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India

2Department of Computer Science & Engineering, Indian Institute of Information Technology, Nagpur, India

Abstract

Thoracic diseases are caused due to ill condition of heart, lungs, mediastinum, diaphragm, and great vessels. Basically, it is a disorder of organs in thoracic region ( rib cage ). Thoracic diseases create severe burden on the overall health of a person and ignorance to them may lead to the sudden death of patients. Lung tuberculosis is one of the thoracic diseases which is accepted as worldwide pandemic. Prevalence of thoracic diseases is rising day by day due to various environmental factors and COVID-19 has trigged it at higher level. Chest radiography is the only omnipresent solution utilized to capture the abnormalities in the chest. It requires periodic visits by patient and timely tracking of findings and observations from the chest radiographic reports. These thoracic disorders are classified under various classes such as Atelectasis, Pneumonia, Hernia, Edema, Emphysema, Cardiomegaly, Fibrosis, Pneumothorax, Consolidation, Pleural Thickening, Effusion, Infiltration, Nodules, and Mass. Precise and reliable detection of these disorders required experienced radiologist. The major area of research in this domain is accurate localization and classification of affected region. In order to make accurate prognosis of chest diseases, research community has developed various automated models using deep learning. Deep learning has created a massive impact in terms of analysis in the domain of medical imaging where unprecedented amount of data is generated daily. There are various challenges faced by the community prior to model building. These challenges include orientation, data augmentation, colour space augmentation, and feature space augmentation of image but are pragmatically handle by various parameters and functions in deep learning models by maintaining their accuracies.

This chapter aims to analyse critically the deep learning techniques utilized for thoracic image analysis with respective accuracy achieved by them. The various deep learning techniques are described along with dataset, activation function and model used, number and types of layers used, learning rate, training time, epoch, performance metric, hardware used, and type of abnormality detected. Moreover, a comparative analysis of existing deep learning models based on accuracy, precision, and recall is also presented with emphasize on the future direction of research.

Keywords: Accuracy, classification, deep learning, localization, precision, recall, radiography, thoracic disorder

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Intelligence and Healthcare Informatics»

Представляем Вашему вниманию похожие книги на «Computational Intelligence and Healthcare Informatics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Intelligence and Healthcare Informatics»

Обсуждение, отзывы о книге «Computational Intelligence and Healthcare Informatics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x