Computational Intelligence and Healthcare Informatics

Здесь есть возможность читать онлайн «Computational Intelligence and Healthcare Informatics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Intelligence and Healthcare Informatics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Intelligence and Healthcare Informatics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

AI techniques are being successfully used in the fields of health to increase the efficacy of therapies and avoid the risks of false diagnosis, therapeutic decision-making, and outcome prediction in many clinical cases, thanks to the rapid advancement of technology. The acquisition, analysis, and application of a vast amount of information required to solve complex problems is a challenge for modern health therapies.
The 21 chapters in this integrate several aspects of computational intelligence like machine learning and deep learning from diversified perspectives. The purpose of the book is to endow to different communities with their innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modeling, advanced deployment, case studies, analytical results, computational structuring and significance progress in healthcare applications.

Computational Intelligence and Healthcare Informatics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Intelligence and Healthcare Informatics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Ref. Dataset Hardware and software platform used Input image size Time required for training
[47] CheXpert NVIDIA Geforce RTX 2080 Ti with 11GB memory. Python with Keras and TensorFlow 224 × 224 pixels -
[51] Lung ultrasonography videos from Italy RTX-2080 NVIDIA GPU 1,005 frames 11 hours
[46] NIH Tuberculosis Chest X-ray dataset [18] and Belarus Tuberculosis Portal dataset [21] Nvidia GeForce GTX 1050 Ti 512 × 512 5–6 ms
[26] ChestX-ray14 dataset 8-core CPU and four TITAN V GPUs Pytorch 1.0 framework in Python 3.6 on an Ubuntu 16.04 server 224 × 224 -
[20] ChestX-ray14 dataset NVIDIA TITAN Xp GPUs Pytorch 224 × 224 6 hours
[70] ChestX-ray14 dataset Dev-Box linux server with 4 Titan X GPUs 224 × 224 -
[5] ChestX-ray14 dataset Intel Core(TM) i7-6850k CPU 3.60GHz processor, 4TB of hard disk space, 7889 MB of RAM, and a CUDA-enabled NVidia Titan 11 GB graphics processing unit with python and Keras library on TensorFlow 224 × 224 -
[49] ChestX-ray8 NVIDIA GeForce GTX TITAN and PyTorch 512 × 512 20 hours
[46] NIH Tuberculosis Chest X-ray [18], Belarus Tuberculosis [A6] Nvidia GeForce GTX 1050 Ti 512 × 512 1 hour
[61] Kaggle PSNA Nvidia Tesla V100 and Nvidia K80 and Keras library of Python 512 × 512 7 hours
[13] St. Michael’s Hospital chest x-ray 3 NVIDIA Titan X 12GB GPUs 256 × 256 1 hour
[35] NIH Tuberculosis Chest X-ray [18], Belarus Tuberculosis [A6] Intel i5 processor with 32 GB of RAM, and a CUDA-enabled Nvidia Titan 312 GB GPU 256 × 256 -

2.5 Summary

Considering scarcity of radiologists in less economically developed countries, deep learning models are used for medical imaging for detecting abnormalities in CXR images. There are 14 pathologies whose severity leads to mortality; therefore, many researchers try to detect all 14 pathologies. Generally, DL models are classified into two categories, namely, ensemble and non-ensemble models. Many researchers deployed parameters initialized from ImageNet dataset and then fine tune their proposed network as per the task. In order to deal with different issue, different pre-processing techniques are employed by the authors. The ChestX-ray14 dataset is the popular dataset which is experimented mostly as it contains large number of images with annotation. Cardiomegaly is the major chest pathology detected by many authors due to its spatially spread nature. We have also discussed factors affecting performance of models along with their significance. Finally, we have compared existing models on the basis of different parameters so that it will be easy to carry out future research to develop more robust and accurate model for the thoracic image analysis using deep models.

2.6 Conclusion and Future Scope

We found that it is tedious to obtain a good AUC score for all the diseases using single CNN. Doctors used to rely on a broad range of additional data such as patient age, gender, medical history, clinical symptoms, and possibly CXRs from different views. These additional information should also be incorporated into the model training. For the identification of diseases which have small and complex structures on CXRs, a finer resolution such as 512 × 512 or 1,024 × 1,024 may be advantageous. However, for preparation and inference, this investigation needs far more computational resources. In addition, another concern is CXR image consistency. When taking a deeper look at the CheXpert, it is observed that a considerable rate of samples have low quality (e.g., rotated image , low-resolution , samples with texts , and noise ) that definitely deteriorate the model performance. Spatially spread abnormalities such as cardiomegaly and Edema can be localized more accurately. Due to shift variant nature of CNN, antialiasing filters are needed to improve the performance of CNN model.

Deep learning models should be able to integrate and interpret data from various imaging sources to obtain a better perspective on the anatomy of the patient in order to allow efficient analysis of patient scans. This could produce deeper insights into the nature and development of the disease, thereby offering a greater degree of understanding of the condition of patients by radiologists. Along with x-ray images other parameters such as heredity, age, and diabetes status, parameters can also be added to improve accuracy. Rather than going for ensemble and pre-trained models, pathology specific and data specific models can be implemented in future by combining good characteristics of existing models. Same models can also be used for detecting abnormalities in other region of body such as brain tumor, mouth cancer, and head-neck cancer. Novel deep learning models can be implemented for detecting post COVID impact on chest.

References

1. Abbas, A., Abdelsamea, M.M., Gaber, M.M., Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence , arXiv preprint arXiv:2003.13815 ., 51, 2, 854–864 2020.

2. Abiyev, R.H. and Ma’aitah, M.K.S., Deep convolutional neural networks for chest diseases detection. J. Healthcare Eng ., 2018 , 1–11, 2018.

3. Apostolopoulos, I.D., Aznaouridis, S.I., Tzani, M.A., Extracting possibly representative COVID-19 Biomarkers from X-Ray images with Deep Learning approach and image data related to Pulmonary Diseases. J. Med. Biol. Eng ., 1, 40, 462–469, 2020.

4. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H., Chest pathology detection using deep learning with non-medical training, in: 2015 IEEE 12th international symposium on biomedical imaging (ISBI) , 2015, April, IEEE, pp. 294–297.

5. Behzadi-khormouji, H., Rostami, H., Salehi, S., Derakhshande-Rishehri, T., Masoumi, M., Salemi, S., Batouli, A., Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Comput. Methods Programs Biomed ., 185 , 105162, 2020.

6. Belarus tuberculosis portal. Available at: http://tuberculosis.by.

7. Bharati, S., Podder, P., Mondal, M.R.H., Hybrid deep learning for detecting lung diseases from X-ray images. Inf. Med. Unlocked , 20 , 100391, 2020.

8. Bouslama, A., Laaziz, Y., Tali, A., Diagnosis and precise localization of cardiomegaly disease using U-NET. Inf. Med. Unlocked , 19, 100306, 2020.

9. Chauhan, A., Chauhan, D., Rout, C., Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS One , 9 , 11, e112980, 2014.

10. Chen, B., Li, J., Guo, X., Lu, G., DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays. Biomed. Signal Process. Control , 53 , 101554, 2019.

11. Cheng, J.Z., Ni, D., Chou, Y.H., Qin, J., Tiu, C.M., Chang, Y.C., Chen, C.M., Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep ., 6 , 1, 1–13, 2016.

12. Chollet, F., Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 1251–1258, 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Intelligence and Healthcare Informatics»

Представляем Вашему вниманию похожие книги на «Computational Intelligence and Healthcare Informatics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Intelligence and Healthcare Informatics»

Обсуждение, отзывы о книге «Computational Intelligence and Healthcare Informatics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x