Ibrahim Dincer - Thermal Energy Storage Systems and Applications

Здесь есть возможность читать онлайн «Ibrahim Dincer - Thermal Energy Storage Systems and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Thermal Energy Storage Systems and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Thermal Energy Storage Systems and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Thermal Energy Storage Systems and Applications
Provides students and engineers with up-to-date information on methods, models, and approaches in thermal energy storage systems and their applications in thermal management and elsewhere Thermal Energy Storage: Systems and Applications
Thermal Energy Storage: Systems and Applications, Third Edition

Thermal Energy Storage Systems and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Thermal Energy Storage Systems and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 117 A composite wall with many layers in series where R t R tt - фото 152

Figure 1.17 A composite wall with many layers in series.

where, ∑ R t= R t,t= 1/ HA . Therefore, the overall heat transfer coefficient becomes

(1.106) 166 The Cylinder A practical common object is a hollow cylinder and a - фото 153

1.6.6 The Cylinder

A practical common object is a hollow cylinder, and a commonly encountered problem is the case of heat transfer through a pipe or cylinder. Consider that we have a cylinder of internal radius r 1and external radius r 2, whose inner and outer surfaces are in contact with fluids at different temperatures ( Figure 1.18). In a steady‐state form with no heat generation, the governing heat conduction equation is written as

Thermal Energy Storage Systems and Applications - изображение 154

Figure 1.18 A hollow cylinder.

(1.107) Thermal Energy Storage Systems and Applications - изображение 155

Based on Fourier's law, the rate at which heat is transferred by conduction across the cylindrical surface in the solid is expressed as

(1.108) where A 2𝜋 rL is the area normal to the direction of heat transfer To - фото 156

where A = 2𝜋 rL is the area normal to the direction of heat transfer.

To determine the temperature distribution in the cylinder, it is necessary to solve Eq. (1.107)under appropriate boundary conditions, by assuming that k is constant. By integrating Eq. (1.107)twice, the following heat transfer equation is obtained:

(1.109) If we now consider a composite hollow cylinder the heat transfer equation is - фото 157

If we now consider a composite hollow cylinder, the heat transfer equation is found to be as follows, where interfacial contact resistances are neglected:

(1.110) where R tt 12π r 1 Lh 1 ln r 2 r 12π k 1 L ln r 3 r 22π k - фото 158

where R t,t= (1/2π r 1 Lh 1) + (ln( r 2/ r 1)/2π k 1 L ) + (ln( r 3/ r 2)/2π k 2 L ) + ⋯(1/2π r n Lh n)

1.6.7 The Sphere

The case of heat transfer through a sphere is not as common as the cylinder problem. Consider a hollow sphere of internal radius r 1and external radius r 2( Figure 1.19). Also, consider the inside and outside temperatures to be T 1and T 2, respectively, and constant thermal conductivity with no heat generation. We can express the heat conduction across the sphere wall in the form of Fourier's law:

(1.111) Figure 119 Heat conduction in a hollow sphere where A 4π r 2is the area - фото 159

Figure 119 Heat conduction in a hollow sphere where A 4π r 2is the area - фото 160

Figure 1.19 Heat conduction in a hollow sphere.

where, A = 4π r 2is the area normal to the direction of heat transfer.

After integrating Eq. (1.111), we obtain the following expression:

(1.112) If we now consider a composite hollow sphere the heat transfer equation is - фото 161

If we now consider a composite hollow sphere, the heat transfer equation is determined to be as follows, neglecting interfacial contact resistances:

(1.113) where 168 Conduction with Heat Generation a The Plane Wall Consider a - фото 162

where, 168 Conduction with Heat Generation a The Plane Wall Consider a plane - фото 163

1.6.8 Conduction with Heat Generation

(a) The Plane Wall

Consider a plane wall, as shown in Figure 1.20a, in which there is uniform heat generation per unit volume. The heat conduction equation becomes

(1.114) Thermal Energy Storage Systems and Applications - изображение 164

By integrating Eq. (1.114)with the prescribed boundary conditions, T (− L ) = T 1and T ( L ) = T 2. The temperature distribution can be obtained as

(1.115) The heat flux at any point in the wall can be found depending on x by using - фото 165

The heat flux at any point in the wall can be found, depending on x , by using Eq. (1.115)with Fourier's law.

If T 1= T 2≡ T s, the temperature distribution is symmetrical about the midplane ( Figure 1.20b). Then,

(1.116) Figure 120 Heat conduction in a slab with uniform heat generation a - фото 166

Figure 120 Heat conduction in a slab with uniform heat generation a - фото 167

Figure 1.20 Heat conduction in a slab with uniform heat generation: (a) asymmetrical boundary conditions, (b) symmetrical boundary conditions.

At the plane of symmetry d T /d x = 0, and the maximum temperature at the midplane is

(1.117) After combining Eqs 1116and 1117 we find the dimensionless temperature - фото 168

After combining Eqs. (1.116)and (1.117), we find the dimensionless temperature as follows:

(1.118) b The Cylinder Consider a long cylinder Figure 118 with uniform heat - фото 169

(b) The Cylinder

Consider a long cylinder ( Figure 1.18) with uniform heat generation. The heat conduction equation can be rewritten as

(1.119) By integrating Eq 1119 with the boundary conditions d T d r 0 for the - фото 170

By integrating Eq. (1.119), with the boundary conditions, d T /d r = 0, for the centerline ( r = 0) and T ( r 1) = T s, the temperature distribution can be obtained as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Thermal Energy Storage Systems and Applications»

Представляем Вашему вниманию похожие книги на «Thermal Energy Storage Systems and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Thermal Energy Storage Systems and Applications»

Обсуждение, отзывы о книге «Thermal Energy Storage Systems and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x