Semantic Web for Effective Healthcare Systems

Здесь есть возможность читать онлайн «Semantic Web for Effective Healthcare Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Semantic Web for Effective Healthcare Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Semantic Web for Effective Healthcare Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Recently, the Semantic Web has gained huge popularity to address these challenges. Semantic web technologies have the opportunity to transform the way healthcare providers utilize technology to gain insights and knowledge from their data and make decisions. Both big data and semantic web technologies can complement each other to address the challenges and add intelligence to healthcare management systems.
The aim of this book is to analyze the current status on how Semantic Web is used to solve the health data integration and interoperability problem, how it provides advanced data linking capabilities that can improve search and retrieval of medical data. There are chapters in the book which analyze the tools and approaches to semantic health data analysis and knowledge discovery. The book discusses the role of semantic technologies in extracting and transforming healthcare data before storing it in repositories. It also discusses different approaches for integrating heterogeneous healthcare data. To summarize, the book will help readers understand key concepts in semantic web applications for biomedical engineering and healthcare.

Semantic Web for Effective Healthcare Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Semantic Web for Effective Healthcare Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

FP : the number of incorrect classifications of negative examples (false positive)

TN : the number of correct classifications of negative examples (true negative)

Precision is defined as the percentage of correctly identified documents among the documents returned; whereas recall is defined as the percentage of relevant results among the correctly identified documents. Practically, high recall is achieved at the expense of precision and vice versa [61]. However, the metric f-measure is suitable when single metric is needed to compare different models. It is defined as the harmonic mean of precision and recall. Based on the confusion matrix, the precision, the recall, and the f-measure of the positive class are defined as

(1.3) 14 15 16 - фото 22

(1.4) 15 16 Ontologybased Semantic Indexing - фото 23

(1.5) 16 Ontologybased Semantic Indexing OnSI model is evaluated by the - фото 24

(1.6) Ontologybased Semantic Indexing OnSI model is evaluated by the metrics such - фото 25

Ontology-based Semantic Indexing (OnSI) model is evaluated by the metrics such as precision, recall, and accuracy, as shown in Equations 1.3, 1.4, 1.5, and 1.6.

1.6 Dataset Description

Document collection like Healthcare service reviews (Dataset DS1) were collected from different social media web sites for 10 different hospitals, as detailed in Tables 1.2and 1.3.

Table 1.2 Social media reviews for healthcare service (DS1).

Number of reviews
Data source Positive Negative
Twitter 1200 525
Mouthshut.com 425 110
BestHospitalAdvisor.com 200 85
Google Reviews 580 320
Total Reviews 2405 1040

Table 1.3 Number of reviews of features and hospitals (DS1).

Features Reviews
Cost 663
Medicare 748
Nursing 776
Infrastructure 554
Time 704
Number of reviews
H1 596 H6 308
H2 411 H7 313
H3 399 H8 297
H4 227 H9 281
H5 252 H10 361

Table 1.3shows that 663 reviews were collected for the feature “cost,” and 596 reviews were collected for the hospital H1. The list of features is identified from the previous work, related articles, and social media websites. For example, the document [62] clearly identified the necessary criteria for healthcare services. The expectations of patients such as cost, hospital characteristics, infrastructure facility, recommendations by other users, treatment and nursing care, and medical expertise were clearly mentioned in the article [63]. Features were also selected by referring web sites like, BestHospitalAdvisor, Mouthshut.com, webometrics, and so on. The comments given by patients or by their care takers in these websites were analyzed for different features of healthcare services of these different hospitals.

1.7 Results and Discussions

Ontology-based Semantic Indexing (OnSI) model builds domain Ontology for each product/service review documents using the selected features from the CFS LDAmodel. Protégé software is used to build and query the Ontology model. The top five terms selected by LDA model, related to each topic for the dataset is shown in Table 1.4. Each topic is manually labeled in context with the first term in the list. It is difficult to carry out human annotation for all the terms grouped under the topic.

Table 1.4 List of top five terms by LDA model.

Topics/features of (DS1) Feature terms by FSLDA model (DS1)
Topic 1—Cost cost, test, money, charge, day
Topic 2—Medicare doctor, nurse, team, treatment, bill
Topic 3—Staff staff, patient, child, problem, face
Topic 4—Infrastructure hospital, people, room, experience, surgery
Topic 5—Time time, operation, hour, service, check

For example, the term “bill” is one of the top words under the topic “medicare.” However, it is more related to the topics “cost” or “infrastructure” or “time.” Similarly, the term “appointment” is not present in any of the list under top 5 or top 10 terms; however, it is more appropriate to the topics “time” and “medicare.” In order to alleviate this problem, the CFS LDAmodel selects the representative terms of each topic with reference to the first term (the term which has the highest term-topic probability in each topic) in the list, using the correlation analysis. As stated in the previous example, the term “bill” is not related to the term “doctor,” and it is highly correlated with the terms “cost,” “hospital,” and “time.” The correlation values of these terms are shown in Table 1.5. For example, the term-topic probability “Φ tw” of “room” is 0.0134 and correlated value “c” with “cost” is 0.0222. As stated in another example, the term “appointment” is highly correlated with the terms “doctor” and “time,” and it is grouped under the topic “medicare” and “time” as shown in Table 1.5. As an another example, the term “disease” is related with “doctor” and “hospital,” and it is not related with the terms “cost,” “time,” and “staff,” as shown in Table 1.5.

Table 1.5 Sample correlated terms selected by CFS LDA.

Features Cost Medicare Staff Infrastructure Time
High probable terms cost doctor Staff Hospital time
Term-topic probability (Φ tw) 0.0923 0.2132 0.2488 0.3152 0.1247
Correlated value (c ) 1 1 1 1 1
Sample terms modeled by CFS LDA
Room Φ twC 0.01340.0222 0.00040.1378 0.00050.2392 0.04710.0402 0.01340.0222
Disease Φ twC 0.0004-0.0347 0.02220.0547 0.0005-0.0462 0.00040.0948 0.0004+0.0408
Appointment Φ twC 0.0134-0.0343 0.00920.1802 0.0005-0.0462 0.0004-0.0414 0.00040.0477
Patient Φ twC 0.01770.0042 0.00040.1415 0.12470.1429 0.00040.1502 0.00050.2238
Bill Φ twC 0.00040.0468 0.0265-0.0015 0.00010.1614 0.01210.1176 0.00050.2111

Table 1.6shows the list of feature terms selected by the CFS LDAmodel. Among the pre-processed and PoS tagged nouns, 68 terms are selected for the topic “cost,” 110 for “medicare,” 112 for “staff,” 101 for “infrastructure,” and 73 for “time.”

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Semantic Web for Effective Healthcare Systems»

Представляем Вашему вниманию похожие книги на «Semantic Web for Effective Healthcare Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Semantic Web for Effective Healthcare Systems»

Обсуждение, отзывы о книге «Semantic Web for Effective Healthcare Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x