Machine Learning Techniques and Analytics for Cloud Security

Здесь есть возможность читать онлайн «Machine Learning Techniques and Analytics for Cloud Security» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning Techniques and Analytics for Cloud Security: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning Techniques and Analytics for Cloud Security»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY
This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions
Audience The aim of Machine Learning Techniques and Analytics for Cloud Security

Machine Learning Techniques and Analytics for Cloud Security — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning Techniques and Analytics for Cloud Security», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 33 FN TP and FP values for colon Figure 34 FN TP and FP values - фото 30

Figure 3.3 FN, TP, and FP values for colon.

Figure 34 FN TP and FP values for lung Precision is the fraction of TP - фото 31

Figure 3.4 FN, TP, and FP values for lung.

Precision is the fraction of TP examples among the examples that the model classified as positive. In other words, it is the number of true positives divided by the number of FP plus true positives. Recall, also known as sensitivity, is the fraction of examples classified as positive, among the total number of positive examples. In other words, this is the number of true positives divided by the number of true positives plus FN. In our model, the resultant set of genes has been validated using NCBI database for both colon and lung. From the diagram, the intersection part for colon dataset ( Figure 3.3), and for lung dataset ( Figure 3.4), the number of TP genes is identified. At the same time, FP and FN values are also identified from the figures in the same way.

Further, we have calculated the precision, recall, and F-score values to check how good our model is. Precision tells us how precise/accurate our model is out of those predicted as positive and how many of them are actual positive. The formula that is used to calculate for precision [ Equation (3.7)] and recall [ Equation (3.8)] is clearly mentioned.

(3.7) Recall calculates the actual number of positives recorded by our model ie - фото 32

Recall calculates the actual number of positives recorded by our model, i.e., what proportions of actual positives was identified correctly.

(3.8) Unfortunately a tradeoff was seen between both precision and recall With - фото 33

Unfortunately, a trade-off was seen between both precision and recall. With higher the value of Recall, then lower will be the precision value and vice versa. As a result, we are getting different impression of the outcome in the result set found for two different datasets ( Figures 3.5and 3.6). In order to overcome this trade-off, F1-score has been calculated, to find an optimum point where both the precision and recall values are high.

Figure 35 Fscore for lung and colon using precision Figure 36 Fscore for - фото 34

Figure 3.5 F-score for lung and colon using precision.

Figure 36 Fscore for lung and colon dataset using recall Figure 37 F1 - фото 35

Figure 3.6 F-score for lung and colon dataset using recall.

Figure 37 F1 score for lung and colon dataset Further we have computed F1 - фото 36

Figure 3.7 F1 score for lung and colon dataset.

Further, we have computed F1 score values using the formula [ Equation (3.9)] for two datasets considered here and it is observed that our PC-LR method generates optimal result for colon dataset compared to lung dataset ( Figure 3.7).

(3.9) It should be noted that the generalized formula for Fscore is actually known - фото 37

It should be noted that the generalized formula for F-score is actually known as F β-score. The F-score when used in a regulated manner helps us to weight recall and precision more accurately for our working model. The equation in that becomes little different.

(3.10) Here in the equation of F βscore Equation 310 the factors are - фото 38

Here in the equation of F β-score [ Equation (3.10)], the factors are indicating about in what extent recall is having more importance over precision. For instance, setting the value of β to 2 indicates that recall is being given importance two times higher than precision. The standard practice is to set the value of β to 1, while using in F-score [ Equation (3.10)] which causes our equation to be as Equation (3.9)and by observing the comparative study by giving different weigh on precession and recall, it can be concluded that F1 score can measure the performance of the working model more accurately.

The proposed method has identified 102 genes for lung cancer and 85 genes for colon cancer as cancer mediating genes. The result is generated by validating with NCBI database where some already identified genes are available. Some of the gene symbols are given in the tables below generated by our developed methodology. Table 3.1 contains some the significant TP gene symbols for lung cancer and Table 3.2 contains the same for colon cancer.

Table 3.1Resultant genes (gene symbols) identified by PC-LR method.

Significant true positive genes for lung cancer
KRAS CHRNA3 MIF GSTP1
TP53 SOX9 MAP2K1 VDR
IGFIR TNF RET SYK
IFGBP3 CDH2 MET PGR
STAT3 CDH1 TGFB1 IL10

3.5 Application in Cloud Domain

Cloud computing is a terminology widely used in the field of information technology. It illustrates the basic idea about how an end user can avail different types of resources related to IT like software services and hardware resources. There is no standard accepted definition about cloud is available. But still, it could be defined as a set of virtualized computers which are interconnected and provisions are made dynamically to make them available as computing resources depending on service level agreement. Several categories of services are available in cloud computing domain.

Infrastructural service: Here, different computational resources like processors and storage are provided to the end users in raw format. In this model, users are allowed to install different supplications as well as the operating system in the infrastructure provided to them. This can be thought as users are getting some space for computational purpose on a rental basis. So, the cloud domain can be effectively utilized as research tool for genomic study.

Platform service: While developing and launching new software applications this type of service becomes very important as it needs proper platform for the purpose of implementation.

Table 3.2Resultant genes (gene symbols) identified by PC-LR method.

Significant true positive genes for colon cancer
MSH2 IGF1 PKM IL33
TP53 CCND1 MIF ITGA5
VEGFA VDR TERT CSK
PTGS2 IGF1R TAC1 SDC2
AKT1 HIF1A CDKN1A EGFR

Software services: This type of service is required by users for different applications like Dropbox if storage is an issue or Google Docs in case the requirement is an application which is as good as word processor.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning Techniques and Analytics for Cloud Security»

Представляем Вашему вниманию похожие книги на «Machine Learning Techniques and Analytics for Cloud Security» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning Techniques and Analytics for Cloud Security»

Обсуждение, отзывы о книге «Machine Learning Techniques and Analytics for Cloud Security» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x