Diagnosis and Fault-tolerant Control 1

Здесь есть возможность читать онлайн «Diagnosis and Fault-tolerant Control 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Diagnosis and Fault-tolerant Control 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Diagnosis and Fault-tolerant Control 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book presents recent advances in fault diagnosis strategies for complex dynamic systems. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique, especially for those demanding systems that require reliability, availability, maintainability and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical.<br /><br /><i>Diagnosis and Fault-tolerant Control 1</i> also presents and compares different diagnosis schemes using established case studies that are widely used in related literature. The main features of this book regard the analysis, design and implementation of proper solutions for the problems of fault diagnosis in safety critical systems. The design of the considered solutions involves robust data-driven, model-based approaches.

Diagnosis and Fault-tolerant Control 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Diagnosis and Fault-tolerant Control 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The number of applications using nonlinear models is growing, while the trend of using linearized models is diminishing. It seems that analytical redundancy-based methods have their best application areas in mechanical systems where the models of the processes are relatively precise. Most nonlinear processes under investigation belong to the group of thermal and fluid dynamic processes. The field of applications to chemical processes has few developments, but the number of applications is growing. The favorite linear process under investigation is the DC motor. In general, the trend is changing from applications to safety-related processes with many measurements, as in nuclear reactors or aerospace systems, to applications in common technical processes with only a few sensors. For diagnosis, classification and rule-based reasoning methods are the most important, and the use of neural network classification as well as fuzzy logic-based reasoning is growing.

I.9. FDI application report

Because of the many publications and increasing number of applications (IFAC Congress and IFAC Symposia SAFEPROCESS) between 1991 and 2018, it is of interest to show some trends (Patton et al . 1989; Basseville and Nikiforov 1993; Gertler 1998; Chen and Patton 1999; Frank et al . 2000). Therefore, a literature study is briefly presented as follows. Contributions taking into account the applications reported in Table I.1were considered. The type of faults considered is distinguished according to Table I.2. Among all contributions, the fault detection methods were classified as in Table I.3. The change detection and fault classification methods are indicated in Table I.4. The reasoning strategies for fault diagnosis are reported in Table I.5. The contributions considered are summarized in Table I.6. The evaluation has been limited to the fault detection and diagnosis (FDD) of laboratory, pilot and industrial processes.

Table I.1. FDI applications and number of contributions

Application Number of contributions
Simulation of real processes 105
Large-scale pilot processes 94
Small-scale laboratory processes 68
Full-scale industrial processes 98

Table I.2. Fault type and number of contributions

Fault type Number of contributions
Sensor faults 129
Actuator faults 111
Process faults 123
Control loop or controller faults 48

Table I.3. FDI methods and number of contributions

Method type Number of contributions
Observer 123
Parity space 74
Parameter estimation 101
Frequency spectral analysis 57
Neural networks 79

Table I.4. Residual evaluation methods and number of contributions

Evaluation method Number of contributions
Neural networks 89
Fuzzy logic 65
Bayes classification 54
Hypothesis testing 48

Table I.5. Reasoning strategies and number of contributions

Reasoning strategy Number of contributions
Rule based 40
Sign directed graph 33
Fault symptom tree 32
Fuzzy logic 66

Table I.6. Applications of model-based fault detection

FDD Number of contributions
Milling and grinding processes 91
Power plants and thermal processes 106
Fluid dynamic processes 67
Combustion engine and turbines 96
Automotive 68
Inverted pendulum 63
Miscellaneous 102
DC motors 121
Stirred tank reactor 77
Navigation system 75
Nuclear process 50

Table I.6shows that among mechanical and electrical processes, DC motor applications are mostly investigated. Parameter estimation and observer-based methods are used in the majority of applications in these kind of processes, followed by parity space and combined methods. Thermal and chemical processes are investigated less frequently.

Table I.3shows that parameter estimation and observer-based methods are used in nearly 70% of all applications considered. Neural networks, parity space and combined methods are applied notably less often.

More than 50% of sensor faults are detected using observer-based methods, while parameter estimation, parity space and combined methods play a less important role. For the detection of actuator faults, observer-based methods are mostly used, followed by parameter estimation and neural network methods.

Parity space and combined methods are rarely applied. In general, there are fewer applications for actuator faults than for sensor or process faults. The detection of process faults is mostly carried out with parameter estimation methods. Nearly 50% of all the applications considered use parameter estimation-based methods for detection of process faults. Observer-based, parity space and neural network-based methods are used less often for this class of faults.

Among all the described processes, linear models have been used much more than nonlinear models. In processes with nonlinear models, observer-based methods are mostly applied, but parity equations and neural networks also play an important role. In processes with linear or linearized models, parameter estimation and observer-based methods are mostly used. Parity space and combined methods are also used in several applications but not to the same extent as observer-based and parameter estimation methods.

Taking into account the system considered, the number of nonlinear process applications using nonlinear models is decreasing. For linear processes, no significant change can be stated. The applications of fault-detection methods for nonlinear processes used mostly observer-based and parameter estimation, more than parity space methods. Also, the use of neural networks and combinations are important.

Concerning the fault diagnosis methods, in recent years, the field of classification approaches, especially with neural networks and fuzzy logic, has steadily been growing. Also, rule-based reasoning methods are increasingly being based on fault diagnosis. A growing application of fuzzy rule-based reasoning can be stated. Applications using neural networks for classification are increasing and the trends are analogous to the increasing number of nonlinear process investigations. Nevertheless, the classification of generated residuals seems to remain the most important application area for neural networks.

I.10. From FDI to FTC

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Diagnosis and Fault-tolerant Control 1»

Представляем Вашему вниманию похожие книги на «Diagnosis and Fault-tolerant Control 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Diagnosis and Fault-tolerant Control 1»

Обсуждение, отзывы о книге «Diagnosis and Fault-tolerant Control 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x