Cyberphysical Smart Cities Infrastructures

Здесь есть возможность читать онлайн «Cyberphysical Smart Cities Infrastructures» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Cyberphysical Smart Cities Infrastructures: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cyberphysical Smart Cities Infrastructures»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn to deploy novel algorithms to improve and secure smart city infrastructure
Cyberphysical Smart Cities Infrastructures: Optimal Operation and Intelligent Decision Making,
Cyberphysical Smart Cities Infrastructures

Cyberphysical Smart Cities Infrastructures — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Cyberphysical Smart Cities Infrastructures», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 Park, J.H., Younas, M., Arabnia, H.R., and Chilamkurti, N. (2021). Emerging ICT applications and services‐big data, IoT, and cloud computing. International Journal of Communication Systems. https://onlinelibrary.wiley.com/doi/full/10.1002/dac.4668.

2 2 Amini, M.H., Imteaj, A., and Pardalos, P.M. (2020). Interdependent networks: a data science perspective. Patterns 1 100003. https://www.sciencedirect.com/science/article/pii/S2666389920300039.

3 3 Mohammadi, F.G. and Amini, M.H. (2019). Promises of meta‐learning for device‐free human sensing: learn to sense. Proceedings of the 1st ACM International Workshop on Device‐Free Human Sensing, pp. 44–47.

4 4 Amini, M.H., Mohammadi, J., and Kar, S. (2020). Promises of fully distributed optimization for IoT‐based smart city infrastructures. In: Optimization, Learning, and Control for Interdependent Complex Networks, M. Hadi Amini, 15–35. Springer.

5 5 Amini, M.H., Arasteh, H., and Siano, P. (2019). Sustainable smart cities through the lens of complex interdependent infrastructures: panorama and state‐of‐the‐art. In: Sustainable Interdependent Networks II, ( M. Hadi Amini, Kianoosh G. Boroojeni, S. S. Iyengar et al.), 45–68. Springer.

6 6 Iskandaryan, D., Ramos, F., and Trilles, S. (2020). Air quality prediction in smart cities using machine learning technologies based on sensor data: a review. Applied Sciences 10 (7): 2401.

7 7 Batty, M., Axhausen, K.W., Giannotti, F. et al. (2012). Smart cities of the future. The European Physical Journal Special Topics 214 (1): 481–518.

8 8 Deng, J., Dong, W., Socher, R. et al. (2009). ImageNet: A large‐scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 248–255.

9 9 Lin, T.‐Y., Maire, M., Belongie, S. et al. (2014). Microsoft COCO: Common objects in context. European Conference on Computer Vision, Springer, pp. 740–755.

10 10 Xiao, J., Hays, J., Ehinger, K.A. et al. (2010). Sun database: large‐scale scene recognition from abbey to zoo. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp. 3485–3492.

11 11 Griffin, G., Holub, A., and Perona, P. (2007). Caltech‐256 object category dataset.

12 12 Zhou, B., Lapedriza, A., Xiao, J. et al. (2014). Learning deep features for scene recognition using places database. Advances in Neural Information Processing Systems 27: 487–495.

13 13 Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

14 14 Wang, A., Singh, A., Michael, J. et al. (2018). GLUE: A multi‐task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.

15 15 Zellers, R., Bisk, Y., Schwartz, R., and Choi, Y. (2018). SWAG: A large‐scale adversarial dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326.

16 16 Krishna, R., Zhu, Y., Groth, O. et al. (2017). Visual genome: connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision 123 (1): 32–73.

17 17 Antol, S., Agrawal, A., Lu, J. et al. (2015). VQA: Visual question answering. Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433.

18 18 Shenavarmasouleh, F. and Arabnia, H.R. (2020). DRDr: Automatic masking of exudates and microaneurysms caused by diabetic retinopathy using mask R‐CNN and transfer learning. arXiv preprint arXiv:2007.02026.

19 19 Shenavarmasouleh, F., Mohammadi, F.G., Amini, M.H., and Arabnia, H.R. (2020). DRDr II: Detecting the severity level of diabetic retinopathy using mask RCNN and transfer learning. arXiv preprint arXiv:2011.14733.

20 20 Shenavarmasouleh, F. and Arabnia, H. (2019). Causes of misleading statistics and research results irreproducibility: a concise review. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 465–470.

21 21 Held, R. and Hein, A. (1963). Movement‐produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology 56 (5): 872.

22 22 Moravec, H. (1984). Locomotion, vision and intelligence.

23 23 Hoffmann, M. and Pfeifer, R. (2012). The implications of embodiment for behavior and cognition: animal and robotic case studies. arXiv preprint arXiv:1202.0440.

24 24 Brooks, R.A. (1991). New approaches to robotics. Science 253 (5025): 1227–1232.

25 25 Collins, S.H., Wisse, M., and Ruina, A. (2001). A three‐dimensional passive‐dynamic walking robot with two legs and knees. The International Journal of Robotics Research 20 (7): 607–615.

26 26 Iida, F. and Pfeifer, R. (2004). Cheap rapid locomotion of a quadruped robot: self‐stabilization of bounding gait. In: Intelligent Autonomous Systems, vol. 8, 642–649. The Netherlands: IOS Press Amsterdam.

27 27 Yamamoto, T. and Kuniyoshi, Y. (2001). Harnessing the robot's body dynamics: a global dynamics approach. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180), Volume 1, IEEE, pp. 518–525.

28 28 Bledt, G., Powell, M.J., Katz, B. et al. (2018). MIT cheetah 3: design and control of a robust, dynamic quadruped robot. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 2245–2252.

29 29 Hermann, K.M., Hill, F., Green, S. et al. (2017). Grounded language learning in a simulated 3D world. arXiv preprint arXiv:1706.06551.

30 30 Tenney, I., Das, D., and Pavlick, E. (2019). Bert rediscovers the classical NLP pipeline.

31 31 Pan, Y., Yao, T., Li, H., and Mei, T. (2017). Video captioning with transferred semantic attributes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6504–6512.

32 32 Amirian, S., Rasheed, K., Taha, T.R., and Arabnia, H.R. (2020). Automatic image and video caption generation with deep learning: a concise review and algorithmic overlap. IEEE Access 8: 218386–218400.

33 33 Amirian, S., Rasheed, K., Taha, T.R., and Arabnia, H.R. (2020). Automatic generation of descriptive titles for video clips using deep learning. In: Springer Nature ‐ Research Book Series: Transactions on Computational Science & Computational Intelligence, Hamid R. Arabnia, Springer. 17–28.

34 34 Gao, L., Guo, Z., Zhang, H. et al. (2017). Video captioning with attention‐based LSTM and semantic consistency. IEEE Transactions on Multimedia 19 (9): 2045–2055.

35 35 Yang, Y., Zhou, J., Ai, J. et al. (2018). Video captioning by adversarial LSTM. IEEE Transactions on Image Processing 27 (11): 5600–5611.

36 36 Singh, A., Natarajan, V., Shah, M. et al. (2019). Towards VQA models that can read. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8317–8326.

37 37 Jayaraman, D. and Grauman, K. (2017). Learning image representations tied to egomotion from unlabeled video. International Journal of Computer Vision 125 (1–3): 136–161.

38 38 Jayaraman, D., Gao, R., and Grauman, K. (2018). Shapecodes: self‐supervised feature learning by lifting views to viewgrids. Proceedings of the European Conference on Computer Vision (ECCV), pp. 120–136.

39 39 Gao, R., Feris, R., and Grauman, K. (2018). Learning to separate object sounds by watching unlabeled video. Proceedings of the European Conference on Computer Vision (ECCV), pp. 35–53.

40 40 Parekh, S., Essid, S., Ozerov, A. et al. (2017). Guiding audio source separation by video object information. 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, pp. 61–65.

41 41 Pu, J., Panagakis, Y., Petridis, S., and Pantic, M. (2017). Audio‐visual object localization and separation using low‐rank and sparsity. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 2901–2905.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Cyberphysical Smart Cities Infrastructures»

Представляем Вашему вниманию похожие книги на «Cyberphysical Smart Cities Infrastructures» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Cyberphysical Smart Cities Infrastructures»

Обсуждение, отзывы о книге «Cyberphysical Smart Cities Infrastructures» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x