Artificial Intelligence for Renewable Energy Systems

Здесь есть возможность читать онлайн «Artificial Intelligence for Renewable Energy Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence for Renewable Energy Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence for Renewable Energy Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS
Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design.
Audience

Artificial Intelligence for Renewable Energy Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence for Renewable Energy Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

9 Chapter 9Figure 9.1 AMI architecture.

10 Chapter 10Figure 10.1 Traditional RNN unrolled over t timesteps [12].Figure 10.2 LSTM cell [16].Figure 10.3 GRU cell [12].Figure 10.4 ConvLSTM cell.Figure 10.5 Bidirectional RNN.Figure 10.6 Demonstration of the sliding window approach.Figure 10.7 Predictions done by models trained with window size = 6.

11 Chapter 11Figure 11.1 Classification of biofuels.Figure 11.2 AI-based biodiesel model.

List of Tables

1 Chapter 1 Table 1.1 Eigenvalues of six-phase synchronous generator. Table 1.2 Eigenvalues of three-phase synchronous generator.

2 Chapter 4Table 4.1 Some important applications of ANN technology for the development of b...Table 4.2 Some important applications of combination of artificial neural networ...

3 Chapter 5Table 5.1 Brief summary of current research in battery energy storage systems.Table 5.2 Model parameters for SoC estimation [20].Table 5.3 Performance metrics for regression models.

4 Chapter 6Table 6.1 Models for multi-step wind forecasting.Table 6.2 Ensemble models for WPF.Table 6.3 Miscellaneous DL models for WF.

5 Chapter 8Table 8.1 Comparison of the methodologies with the parameters.

6 Chapter 10Table 10.1 Training and test size for generated dataset from each window size.Table 10.2 Performance of all trained models.Table 10.3 Statistical analysis of the prediction done by LSTM model ( widow size ...

Guide

1 Cover

2 Table of Contents

3 Title Page

4 Copyright

5 Preface

6 Begin Reading

7 Index

8 End User License Agreement

Pages

1 v

2 ii

3 iii

4 iv

5 xi

6 xii

7 xiii

8 xiv

9 1

10 2

11 3

12 4

13 5

14 6

15 7

16 8

17 9

18 10

19 11

20 12

21 13

22 14

23 15

24 16

25 17

26 18

27 19

28 20

29 21

30 22

31 23

32 24

33 25

34 26

35 27

36 28

37 29

38 30

39 31

40 32

41 33

42 34

43 35

44 37

45 38

46 39

47 40

48 41

49 42

50 43

51 44

52 45

53 46

54 47

55 48

56 49

57 50

58 51

59 52

60 53

61 54

62 55

63 56

64 57

65 58

66 59

67 60

68 61

69 62

70 63

71 64

72 65

73 66

74 67

75 68

76 69

77 70

78 71

79 72

80 73

81 74

82 75

83 76

84 77

85 79

86 80

87 81

88 82

89 83

90 84

91 85

92 86

93 87

94 88

95 89

96 90

97 91

98 93

99 94

100 95

101 96

102 97

103 98

104 99

105 100

106 101

107 102

108 103

109 104

110 105

111 106

112 107

113 108

114 109

115 110

116 111

117 112

118 113

119 115

120 116

121 117

122 118

123 119

124 120

125 121

126 122

127 123

128 124

129 125

130 126

131 127

132 128

133 129

134 130

135 131

136 132

137 133

138 134

139 135

140 136

141 137

142 138

143 139

144 140

145 141

146 142

147 143

148 144

149 145

150 147

151 148

152 149

153 150

154 151

155 152

156 153

157 154

158 155

159 156

160 157

161 158

162 159

163 160

164 161

165 162

166 163

167 164

168 165

169 166

170 167

171 168

172 169

173 170

174 171

175 172

176 173

177 174

178 175

179 176

180 177

181 178

182 179

183 181

184 182

185 183

186 184

187 185

188 186

189 187

190 188

191 189

192 190

193 191

194 192

195 193

196 194

197 195

198 196

199 197

200 198

201 199

202 201

203 202

204 203

205 204

206 205

207 206

208 207

209 208

210 209

211 211

212 212

213 213

214 214

215 215

216 216

217 217

218 218

219 219

220 220

221 221

222 222

223 223

224 224

225 225

226 226

227 227

228 229

229 230

230 231

231 232

232 233

233 234

234 235

235 236

236 237

237 238

238 239

239 240

240 241

241 242

242 243

243 244

244 245

245 246

246 247

247 249

248 250

249 251

250 252

Scrivener Publishing100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Artificial Intelligence and Soft Computing for Industrial Transformation

Series Editor: Dr. S. Balamurugan (sbnbala@gmail.com)

Scope: Artificial Intelligence and Soft Computing Techniques play an impeccable role in industrial transformation. The topics to be covered in this book series include Artificial Intelligence, Machine Learning, Deep Learning, Neural Networks, Fuzzy Logic, Genetic Algorithms, Particle Swarm Optimization, Evolutionary Algorithms, Nature Inspired Algorithms, Simulated Annealing, Metaheuristics, Cuckoo Search, Firefly Optimization, Bio-inspired Algorithms, Ant Colony Optimization, Heuristic Search Techniques, Reinforcement Learning, Inductive Learning, Statistical Learning, Supervised and Unsupervised Learning, Association Learning and Clustering, Reasoning, Support Vector Machine, Differential Evolution Algorithms, Expert Systems, Neuro Fuzzy Hybrid Systems, Genetic Neuro Hybrid Systems, Genetic Fuzzy Hybrid Systems and other Hybridized Soft Computing Techniques and their applications for Industrial Transformation. The book series is aimed to provide comprehensive handbooks and reference books for the benefit of scientists, research scholars, students and industry professional working towards next generation industrial transformation.

Publishers at Scrivener Martin Scrivener ( martin@scrivenerpublishing.com) Phillip Carmical ( pcarmical@scrivenerpublishing.com)

Artificial Intelligence for Renewable Energy Systems

Edited by

Ajay Kumar Vyas

S. Balamurugan

Kamal Kant Hiran

and

Harsh S. Dhiman

This edition first published 2022 by John Wiley Sons Inc 111 River Street - фото 1

This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2022 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of WarrantyWhile the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence for Renewable Energy Systems»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence for Renewable Energy Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence for Renewable Energy Systems»

Обсуждение, отзывы о книге «Artificial Intelligence for Renewable Energy Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x