HPLC optimal einsetzen

Здесь есть возможность читать онлайн «HPLC optimal einsetzen» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

HPLC optimal einsetzen: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «HPLC optimal einsetzen»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Dieser Praxisratgeber bietet erprobte Strategien für die Optimierung der HPLC und UHPLC in unterschiedlichsten Einsatzgebieten. Im ersten Teil werden Optimierungsstrategien für unterschiedliche Betriebsarten und Analyte behandelt, von Kleinmolekülen bis hin zu chiralen Substanzen und Biomolekülen. Der zweite Teil beschreibt die rechnergestützte Optimierung und stellt die gängigen Software-Tools und deren Leistungsspektrum vor. Weitere Teile beschreiben Optimierungsstrategien aus Sicht von Routineanwendern in großen Industrie- und kleineren Auftragslaboren sowie aus Sicht verschiedener Gerätehersteller.<br> Dieser Leitfaden ist gleichermaßen für Einsteiger wie für routinierte Anwender geschrieben und lässt keine Frage zum optimalen Einsatz der HPLC unbeantwortet.

HPLC optimal einsetzen — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «HPLC optimal einsetzen», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.3 Weitere Einstellungen bzw. Bedingungen speziell für massenspektrometrische Detektion (siehe auch Kap. 3)

Aufgrund der hohen Acetonitril-Gehalte zu Beginn von HILIC-Trennungen (und auch im Verlauf der Trennung) liegt es nahe, dass der Detektor „Massenspektrometrie“ sehr gut eingesetzt werden kann. Dies resultiert aus der Tatsache, dass aufgrund niedriger Oberflächenspannung der aus der HILIC-produzierten Spraytröpfchen bei der Ionisation, die Tröpfchen in der Quelle effektiv getrocknet werden und die Moleküle effizient in die Gasphase und somit – falls geladen – effizient in das Massenspektrometer transportiert werden können.

Beispiele zur vielseitigen HILIC-Nutzung mit massenspektrometrischer Detektion gibt es mittlerweile in großer Anzahl und das auch für sehr anspruchsvolle polare Moleküle und neuerdings oft auch mit quantifizierender Sichtweise. Eine Auswahl ist im Folgenden zitiert und lässt sich mittlerweile beliebig erweitern. So gibt es HILIC-Arbeiten zu Trennungen von Aminosäuren [12] und Metaboliten in biologischen Systemen [13] sowie Urin [14], Antibiotika [15] Lipide quantitativ in Blutplasma [16], Verunreinigungen von Pharmawirkstoffen [17] Umweltchemikalien [18,19], Flavonoide in pflanzlichen Extrakten [20], wie auch n-verbundene intakte Glykopeptide [21], Proteine [22] sowie intakte Proteine [23].

Aber man sollte auch die grundsätzlichen Probleme in der Nutzung von HILIC als sogenanntes „Front-End“-System für Massenspektrometer nicht verschweigen oder vernachlässigen. Denn aufgrund sogenannten Säulenblutens kann die oftmals empfindlichen Detektions- bzw. Nachweisgrenzen von Massenspektrometern stark beeinflusst und gestört sein. Hierzu sei eine ausführliche Studie mit 17 unterschiedlichen Säulen (und ihrem Einfluss auf 55 Komponenten) sehr empfohlen [24]. Diese Studie empfiehlt konsequente Methodenoptimierung und Bestimmung der Signalunterdückungseffekte für alle zu analysierenden Substanzen. Ebenso ist es essenziell, Matrixeffekte von koeluierenden Substanzen zu erfassen [18, 25].

Eine weitere Publikation sei auch erwähnt und zum Studium empfohlen, wenn es um die Effekte von Detektion und Peakformen bei HILIC-MS geht [26]. Dort wird einprägsam aufgezeigt, dass auch nur kleine Unterschiede bzw. Schwankungen in den Zusammensetzungen von mobiler Phase und der Injektionslösungsmittel große Auswirkungen haben können. Diese Arbeit zeigt noch mal eindrucksvoll die in diesem Kapitel erwähnte Notwendigkeit zur akkuraten Arbeit in der Herstellung von mobiler Phase und Injektionssolvent auf.

Solche Studien zeigen auch schon Erfolg, denn in jüngerer Zeit wird an Lösungen für die HILIC-Probleme aktiv gearbeitet. Neuentwicklungen wie die sogenannte FEED-Injektion (genauer die „Focused, Extended, Extra-control, Delay-volume free“-Injektion; Agilent persönliche Mitteilung) werden zukünftig helfen können, wässrige Injektionen effektiv druchzuführen. In diesem neuen Konzept findet nach der Injektion einer Probe die Durchmischung des Injektionsflusses über ein „T-Stück“ mit der mobilen Phase statt. Somit bringt man die Analyten nicht als ungemischte Probe – schlimmstenfalls im „falschen“ Lösungsmittel – direkt auf die Säule, sondern verdünnt immer in mobiler Phase. Die fehlende Durchmischung vieler Injektionssysteme führt bisher zu oben erwähnter schlechter bzw. Nichtinjizier- barkeit von wässrigen Proben auf eine HILIC-Phase. An dieser Stelle sei nun abschließend empfohlen, die injizierten wässrigen Proben in nur geringem Volumen zu injizieren oder vor Auftreffen auf die Säule mit mobiler Phase (z. B. mittels FEED Injektor) zu durchmischen oder aber in einer seriellen RPLC-HILIC-Kopplung auf die RPLC-Säule aufzugeben [18].

Kurze Zusammenfassung zur Methodenoptimierung in HILIC

Ermöglichen die zu analysierenden Moleküle aufgrund ihrer physikochemischen Eigenschaften eine Trennung mittels HILIC, so sollte man die stationäre Phase mit Sorgfalt auswählen und dann im Anschluss die mobile Phase schrittweise optimieren. Die elektrostatischen Wechselwirkungsmöglichkeiten einiger stationärer Phasen lassen die Trennung zunächst komplizierter erscheinen, aber auch dieses kann man in Hinblick auf die zu trennenden Substanzen sehr gut einschätzen und nutzen.

Es gilt an diesem Punkt noch mal zu erwähnen, dass die Zusammensetzung der mobilen Phase insgesamt einen größeren Einfluss auf die Retentionszeit hat als die anderen Parameter. Also auch abschließend bleibt die Reihenfolge für die HILIC- Methodenoptimierung (in Kombination mit massenspektrometrischer Detektion) folgendermaßen erhalten:

1 I. Stationäre Phase

2 II. Mobile Phase mita) Organischem Laufmittelb) Salzenc) pH-Wert

3 III. Weitere Einstellungen bzw. Bedingungen speziell für massenspektrometrische Detektion

Literatur

1Alpert, A.J. (1990). Hydrophilic-interaction chromatography for the separation of peptides nucleic acids, other polar compounds. J. Chromatogr. 499: 177–196.

2Bieber, S., Döteberg, H.-G., Greco, G., Kromidas, S. und Letzel, T. (2016). HPLC-Tipps Band 3: Gradient, HILIC, SFC und Trends in der HPLC, (Hrsg. S. Kromidas), Pirrot-Verlag, ISBN 9783-937436-58-6.

3ChemAxon (2020) log D predictor; https://disco.chemaxon.com/calculators/demo/plugins/logdzuletzt20.05.2020.

4PubChem (2020) https://pubchem.ncbi.nlm.nih.gov/compound/135#section=Decompositionzuletzt 20.05.2020.

5Letzel, T. (2019). Spezifika der Gradientenelution in der HILIC, In: Der Gradient in der HPLC für Anwender: RP, LC-MS, Ionenanalytik, Biochromatographie, SFC, HILIC. (Hrsg. S. Kro- midas), 1. Auflage, S. 197–203. Wiley-VCH; ISBN-10: 3527344047.

6Greco, G. und Letzel, T. (2013). Main interactions and influences of the chromatographic parameters in HILIC separations. J. Chromatogr. Sci. 51 (7): 684–693.

7Buszewski, B. und Noga, S. (2012). Hydrophilic interaction liquid chromatography (HILIC) – A powerful separation technique. Anal. Bioanal. Chem. 402 (1): 231–247.

8Nováková, L., Havltková, L. und Vlčko-vá, H. (2014). Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends Anal. Chem. 63: 55–64.

9Guo, Y. (2015). Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst 140 (19): 6452–6466.

10Alpert, A.J. (2018). Effect of salts on retention in hydrophilic interaction chromatography. J. Chromatogr. A 1538: 45–53.

11Jandera, P. (2011). Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta 692: 1–25.

12Guerrasio, R., Haberhauer-Troyer, C., Mattanovich, D. et al. (2014). Metabolic profiling of amino acids in cellular samples via zwitterionic sub-2 μm particle size HILIC-MS/MS and a uniformly 13C labeled internal standard. Anal. Bioanal. Chem. 406: 915–922.

13Tang, D.-Q., Li, Z., Xiao-Xing, Y., Choon, N.O. (2016). HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS (Review). Mass Spectrom. Rev. 35: 574–600.

14King, A.M., Mullin L.G., Wilson, I.D. et al. (2019). Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC-MS and ion mobility enabled HILIC-MS. Metabolomics 15: 17.

15Kahsay, G., Song, H., Van Schepdael, A., Cabooter, D. und Adams E. (2014). Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J. Pharm. Biomed. Anal. 87: 142–154.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «HPLC optimal einsetzen»

Представляем Вашему вниманию похожие книги на «HPLC optimal einsetzen» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «HPLC optimal einsetzen»

Обсуждение, отзывы о книге «HPLC optimal einsetzen» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x