Nicola Schmid - Influenza Studie Vorhersage von Antigenübergängen Grippetrenddaten zur Erkennung von saisonaler und pandemischer Influenza und zur Optimierung der Influenzaüberwachung
Здесь есть возможность читать онлайн «Nicola Schmid - Influenza Studie Vorhersage von Antigenübergängen Grippetrenddaten zur Erkennung von saisonaler und pandemischer Influenza und zur Optimierung der Influenzaüberwachung» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Influenza Studie Vorhersage von Antigenübergängen Grippetrenddaten zur Erkennung von saisonaler und pandemischer Influenza und zur Optimierung der Influenzaüberwachung
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Influenza Studie Vorhersage von Antigenübergängen Grippetrenddaten zur Erkennung von saisonaler und pandemischer Influenza und zur Optimierung der Influenzaüberwachung: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Influenza Studie Vorhersage von Antigenübergängen Grippetrenddaten zur Erkennung von saisonaler und pandemischer Influenza und zur Optimierung der Influenzaüberwachung»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Die Antizipation des Zeitpunkts und des Ergebnisses von Übergängen ist entscheidend für die Entwicklung wirksamer saisonaler Influenza-Impfstoffe.
Unter Verwendung eines veröffentlichten phylodynamischen Modells der Influenzaübertragung haben wir Indikatoren für den zukünftigen Evolutionserfolg eines aufkommenden Antigenclusters identifiziert und grundlegende Kompromisse bei unserer Fähigkeit, solche Vorhersagen zu treffen, quantifiziert.
Das letztendliche Schicksal eines neuen Clusters hängt von seiner anfänglichen epidemiologischen Wachstumsrate ab, die eine Funktion der Mutationslast und der Anfälligkeit der Population für den Cluster ist, sowie von der Varianz der Wachstumsrate zwischen gemeinsam zirkulierenden Viren.
Die logistische Regression kann vorhersagen, ob ein Cluster mit einer relativen Häufigkeit von 5% letztendlich mit einer Sensitivität von ~ 80% erfolgreich sein wird.