Daniel D. Stancil - Principles of Superconducting Quantum Computers

Здесь есть возможность читать онлайн «Daniel D. Stancil - Principles of Superconducting Quantum Computers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Superconducting Quantum Computers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Superconducting Quantum Computers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers
Principles of Superconducting Quantum Computers
Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Superconducting Quantum Computers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

151 The matrix representation of the CNOT gate in this alternate convention - фото 57(1.51)

The matrix representation of the CNOT gate in this alternate convention is

152 We will consistently use the first convention with the - фото 58(1.52)

We will consistently use the first convention, with the least-significant qubit (top-most on a circuit diagram) on the right when writing state labels.

1.6 Bell State

Consider the circuit shown in Figure 1.5. The circuit can be described mathematically as U CN( IH ) |00⟩. Here the expression I⊗H simply means a Hadamard gate is applied to the right qubit, and the identity matrix applied to the left qubit (which leaves the left qubit unchanged). Completing the calculation gives

Figure 15 Circuit for creating an entangled state known as a Bell State When - фото 59

Figure 1.5 Circuit for creating an entangled state known as a Bell State. When the two qubits are measured, they will either both be 0, or they will both be 1.

153 154 155 Note that there is no way to - фото 60(1.53)

154 155 Note that there is no way to factor this state into qubit 1 - фото 61(1.54)

155 Note that there is no way to factor this state into qubit 1 state - фото 62(1.55)

Note that there is no way to factor this state into (qubit 1 state) ⊗ (qubit 0 state). This is known as a Bell State , and it is an example of an entangled state, as described in Section 1.1.5.

If we measure the state of one of the qubits in ( 1.55), then we will obtain either a zero or a one with equal probability, as we would expect. The unusual behavior happens when we measure the second qubit: if we measure |0⟩ on the first qubit, then we know the state has collapsed to |00⟩, so a measurement of the second qubit will also yield |0⟩. Similarly, if the first measurement yields |1⟩, then the state must have collapsed to |11⟩, so a measurement of the second qubit will also yield |1⟩. The measurements are correlated, no matter how far apart the physical qubits might be.

We simulated the Bell circuit using IBM’s Qiskit [2], and also executed the circuit on real IBM Quantum hardware. A histogram illustrating the results of simulating the circuit 1024 times (each execution is referred to as a “shot”) is shown in Figure 1.6. From ( 1.55), we see that the probability amplitudes of the states |00⟩ and |11⟩ are both equal to 1/2. Since the probability of measuring a state is the absolute magnitude squared of the amplitude, the probability of measuring each state is 1/2. Consistent with this, the measurements from the 1024 shots are roughly equally divided between the states |00⟩ and |11⟩, with no other states occurring.

Figure 16 Result of executing the circuit 1024 times on a quantum simulator - фото 63

Figure 1.6 Result of executing the circuit 1024 times on a quantum simulator, compared with executing the circuit 1024 times on a real IBM quantum computer.

The simulator gives the result expected from an error-free quantum processor. In contrast, the quantum processors available today are noisy and contain errors. As an illustration, Figure 1.6 also shows the result of executing 1024 shots on a real IBM Quantum processor. Although the states |00⟩ and |11⟩ do occur most frequently, the error states |01⟩ and |10⟩ occasionally occur as well. Fortunately there are techniques to reduce and partially mitigate such noise ( Chapter 9), and these techniques represent an active area of research.

1.7 No Cloning, Revisited

With a better understanding of quantum states and operations, we are now ready to construct a proof of the no-cloning theorem. The proof relies on the fact that unitary operators are linear ; when applied to a sum of states, the operator operates independently on each component:

156 Suppose we have an operator U clonethat takes two qubits as shown in - фото 64(1.56)

Suppose we have an operator U clonethat takes two qubits, as shown in Figure 1.7. When the second qubit is |0⟩, it is replaced with an exact copy of the first qubit. The proof will show that such an operator cannot exist, because it is not compatible with the principle of linearity.

Figure 17 Hypothetical cloning operator that creates an exact and independent - фото 65

Figure 1.7 Hypothetical cloning operator, that creates an exact and independent copy of unknown quantum state | α ⟩. The text will show that such an operator cannot be implemented.

Further suppose that we have two states:

Principles of Superconducting Quantum Computers - изображение 66(1.57)

Principles of Superconducting Quantum Computers - изображение 67(1.58)

By the definition of cloning:

159 Now consider a new state δαβ2 By the definition of cloning - фото 68(1.59)

Now consider a new state |δ⟩=(|α⟩+|β⟩)/2. By the definition of cloning:

160 However by the linearity of unitary operators 161 Since Eqs - фото 69(1.60)

However, by the linearity of unitary operators:

161 Since Eqs 160 and 161 cannot both be true there is no unitary - фото 70(1.61)

Since Eqs. ( 1.60) and ( 1.61) cannot both be true, there is no unitary U clonethat can perform the cloning operation for all states.

We stated earlier that we can clone a (computational) basis state. This can be done with the CNOT gate, with the first qubit as the control. (With our bottom-to-top ordering, this corresponds to the UCN′ operator from ( 1.52).) Suppose state | ψ ⟩ is either |0⟩ or |1⟩, but we don’t know which.

162 If we apply the circuit from Figure 15 to an arbitrary state ψ α - фото 71(1.62)

If we apply the circuit from Figure 1.5 to an arbitrary state | ψ ⟩ = α |0⟩ + β |1⟩, we get a result that looks sort of like cloning, but not quite:

163 The result is not cloning because the two qubits are entangled We did - фото 72(1.63)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Superconducting Quantum Computers»

Представляем Вашему вниманию похожие книги на «Principles of Superconducting Quantum Computers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Superconducting Quantum Computers»

Обсуждение, отзывы о книге «Principles of Superconducting Quantum Computers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x