Daniel D. Stancil - Principles of Superconducting Quantum Computers

Здесь есть возможность читать онлайн «Daniel D. Stancil - Principles of Superconducting Quantum Computers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Superconducting Quantum Computers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Superconducting Quantum Computers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers
Principles of Superconducting Quantum Computers
Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Superconducting Quantum Computers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Since the length of the state vector must always be unity, we are only allowed to use matrices U that conserve the length of the vector. In other words, ⟨ ψ ′| ψ ′⟩ = ⟨ ψ | ψ ⟩ = 1. This puts a very important constraint on the matrix U :

115 using the following observation 116 Since ψ ψ 1 we - фото 19(1.15)

using the following observation:

116 Since ψ ψ 1 we conclude that 117 where I is the identity - фото 20(1.16)

Since ⟨ ψ | ψ ⟩ = 1, we conclude that

Principles of Superconducting Quantum Computers - изображение 21(1.17)

where I is the identity matrix

Principles of Superconducting Quantum Computers - изображение 22(1.18)

Matrices that satisfy this requirement are called unitary matrices. We can view these matrices as performing an operation on a qubit by changing the mixture of basis states. Consequently, the matrices U are also referred to as unitary operators .

The identity matrix I can be considered to be the simplest “gate” and leaves the state vector unchanged. Classically, the NOT gate is the only non-trivial single-bit gate. In contrast, there are many non-trivial single qubit quantum gates (technically, the number of 2×2 unitary matrices is unlimited). The most common non-trivial single qubit gates are the Pauli-X ( X ), Pauli-Y ( Y ), Pauli-Z ( Z ), and Hadamard ( H ) gates defined as follows:

Principles of Superconducting Quantum Computers - изображение 23(1.19)

Principles of Superconducting Quantum Computers - изображение 24(1.20)

Principles of Superconducting Quantum Computers - изображение 25(1.21)

Principles of Superconducting Quantum Computers - изображение 26(1.22)

To get an understanding of what these gates do, consider applying an X gate to the “ground” state |0⟩:

123 Similarly 124 We see then that the X gate is a bit flip gate and - фото 27(1.23)

Similarly,

124 We see then that the X gate is a bit flip gate and transforms 0 - фото 28(1.24)

We see then that the X gate is a “bit flip” gate, and transforms |0⟩ into |1⟩ and vice versa. This, then is the analog of the classical NOT gate. You should verify the following results from applying Y,Z, and H gates:

125 126 127 In addition it is interesti - фото 29(1.25)

126 127 In addition it is interesting to note that each one of these - фото 30(1.26)

127 In addition it is interesting to note that each one of these matrices - фото 31(1.27)

In addition, it is interesting to note that each one of these matrices is its own Hermitian conjugate. Consequently, these four gates have the property that applying them twice gives the identity matrix:

Principles of Superconducting Quantum Computers - изображение 32(1.28)

Note that while X,Y, and Z gates transform between the |0⟩ and |1⟩ states, the Hadamard gate actually creates a superposition state, and therefore will prove to be particularly useful. The states resulting from applying H to the basis states are given their own names:

129 130 Multiple gates can be sequentially applied to a qubit by matrix - фото 33(1.29)

130 Multiple gates can be sequentially applied to a qubit by matrix - фото 34(1.30)

Multiple gates can be sequentially applied to a qubit by matrix multiplication:

картинка 35(1.31)

This expression says that we start with the ground state, then apply a Hadamard gate, followed by a Pauli-Y and then a Pauli-Z. Note that this process conceptually moves from right to left. This computation can be represented by a quantum circuit diagram as shown in Figure 1.3. Note that the process moves from left to right on the circuit diagram: we begin with the ground state on the left, then apply a Hadamard gate, a Pauli-Y gate, and a Pauli-X.

Figure 13 Circuit representation of Eq 131 In a quantum circuit diagram - фото 36

Figure 1.3 Circuit representation of Eq. ( 1.31). In a quantum circuit diagram, the operation goes from left to right, while the matrix expression is shown going from right to left. The final box is a measurement in the standard basis, resulting in a classical bit.

Finally, after performing a quantum calculation, we generally measure each qubit. The symbol for a measurement is shown as the last element in Figure 1.3. This action collapses the final state onto one of the basis states. The outcome of a measurement is a classical bit that is stored in a classical register. “Quantum wires” are denoted by solid lines, and “classical wires” are denoted with double lines. A quantum wire simply represents a time-interval over which the state is kept unchanged.

1.5 Two-Qubit Gates

It is also possible to have gates with multiple qubits as inputs. However, unlike classical multi-bit gates, the fact that quantum gates are reversible requires that there must be the same number of output qubits as input qubits. In this section we will explore some common two-qubit gates.

1.5.1 Two-Qubit States

When we consider a system with two qubits, we don’t just consider each qubit independently of the other. Instead, this forms a two-qubit system with its own set of basis states. If we know the state of each qubit, then the combined two-qubit state is described using the tensor product of the two state vectors, defined as follows:

132 Using the standard basis the basis states for a twoqubit system are - фото 37(1.32)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Superconducting Quantum Computers»

Представляем Вашему вниманию похожие книги на «Principles of Superconducting Quantum Computers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Superconducting Quantum Computers»

Обсуждение, отзывы о книге «Principles of Superconducting Quantum Computers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x