Daniel D. Stancil - Principles of Superconducting Quantum Computers

Здесь есть возможность читать онлайн «Daniel D. Stancil - Principles of Superconducting Quantum Computers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Superconducting Quantum Computers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Superconducting Quantum Computers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers
Principles of Superconducting Quantum Computers
Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Superconducting Quantum Computers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Using the standard basis, the basis states for a two-qubit system are defined by combinations of the |0⟩ and |1⟩ states:

133 134 135 - фото 38(1.33)

134 135 136 Any twoqubit state can be w - фото 39(1.34)

135 136 Any twoqubit state can be written as a linear combination of - фото 40(1.35)

136 Any twoqubit state can be written as a linear combination of the basis - фото 41(1.36)

Any two-qubit state can be written as a linear combination of the basis states:

137 Twoqubit state vectors are also normalized 138 As we will see - фото 42(1.37)

Two-qubit state vectors are also normalized:

138 As we will see later while every twoqubit state can be written in the - фото 43(1.38)

As we will see later, while every two-qubit state can be written in the form of Eq. ( 1.37), not every two-qubit state can be written as the tensor product of single-qubit states.

This can be generalized into a system with n qubits, requiring state vectors with 2 ncomponents with 2 ncomplex coefficients.

1.5.2 Matrix Representation of Two-Qubit Gates

Just as single qubit gates can be represented by 2×2 matrices, an n -qubit gate can be represented by a 2n×2n matrix. Consequently two-qubit gates require the construction of 4×4 unitary matrices. Given two single-qubit operators A and B , the tensor product is defined as:

139 which creates a 44 matrix Suppose we wanted to construct a twoqubit - фото 44(1.39)

which creates a 4×4 matrix.

Suppose we wanted to construct a two-qubit circuit starting in the state |10⟩ with an X gate applied to the left qubit, and a Y gate applied to the other. Mathematically this would be written

Principles of Superconducting Quantum Computers - изображение 45(1.40)

Referring to ( 1.24) we see that the X gate will simply flip the left qubit, and referring to ( 1.25) we see that the Y gate will flip the right qubit and add the coefficient i . We conclude that

Principles of Superconducting Quantum Computers - изображение 46(1.41)

To see how this would be implemented using the matrix representation, we first construct the X⊗Y matrix:

142 Completing the calculation gives the expected result 143 A - фото 47(1.42)

Completing the calculation gives the expected result:

143 A particularly interesting twoqubit circuit is formed by applying a - фото 48(1.43)

A particularly interesting two-qubit circuit is formed by applying a Hadamard gate to each qubit in the ground state: HH |00⟩. Let us first compute HH :

144 Completing the calculation gives 145 Note that the resulting state - фото 49(1.44)

Completing the calculation gives:

145 Note that the resulting state vector can be decomposed into a sum of all - фото 50(1.45)

Note that the resulting state vector can be decomposed into a sum of all of the two-qubit basis states:

146 or alternatively 147 We see that application of Hadamard gates to - фото 51(1.46)

or alternatively

147 We see that application of Hadamard gates to each qubit creates an - фото 52(1.47)

We see that application of Hadamard gates to each qubit creates an equally weighted superposition of all possible basis states. This is often a very useful starting point for a quantum calculation.

Although the matrix representation can be helpful in understanding the operations, calculations can often be done more compactly once the effect of the gates are understood. For example, we could write HH |00⟩ = HH |0⟩ |0⟩, apply the Hadamard gates to each qubit, and simplify:

148 We conclude this section with a comment on notation A more compact - фото 53(1.48)

We conclude this section with a comment on notation. A more compact notation is often used for situations where the same operator is applied across multiple qubits; i.e., H⊗H is alternatively written H⊗2, H⊗H⊗H=H⊗3, etc.

1.5.3 Controlled-NOT

The gates that we have considered so far involve operations that are independently applied to separate qubits—there is no qubit–qubit interaction. If we are to entangle two qubits, then we need classes of gates where the operation on one qubit depends on the state of another. One of the most important such gates is the controlled-NOT, or CNOT gate. For this gate, one of the input qubits is the “control,” and the other is the “target.” If the control qubit is zero, then nothing is done to the target qubit, but if the control qubit is one, then the target qubit is flipped. For example, if the right qubit in our notation is the control and the left qubit is the target, then the CNOT gate transforms the basis states as follows:

149 The effect of a CNOT can be compactly represented by UCNtcctc - фото 54(1.49)

The effect of a CNOT can be compactly represented by UCN|t⟩|c⟩=|c⊕t⟩|c⟩, where ⊕ represents exclusive-OR or modulo-2 addition (e.g., 0+1=1, but 1+1=0). The matrix representation of the CNOT gate is

150 and the circuit symbol is shown in Figure 14 Figure 14 Symbol for a - фото 55(1.50)

and the circuit symbol is shown in Figure 1.4.

Figure 14 Symbol for a CNOT gate and its effect on basis states It is worth - фото 56

Figure 1.4 Symbol for a CNOT gate, and its effect on basis states.

It is worth noting at this point that we are putting the least-significant qubit at the top of a circuit diagram, and on the right on the state labels used with kets. This labels states with the natural binary order. However, there are different conventions in use, and this can be a point of confusion. Some authors put the top-most qubit in a circuit diagram on the left when they label kets. In this alternate notation, UCN′|c⟩|t⟩=|c⟩|c⊕t⟩ so that

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Superconducting Quantum Computers»

Представляем Вашему вниманию похожие книги на «Principles of Superconducting Quantum Computers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Superconducting Quantum Computers»

Обсуждение, отзывы о книге «Principles of Superconducting Quantum Computers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x