Ted Kwartler - Sports Analytics in Practice with R
Здесь есть возможность читать онлайн «Ted Kwartler - Sports Analytics in Practice with R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Sports Analytics in Practice with R
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
Sports Analytics in Practice with R: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Sports Analytics in Practice with R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A practical guide for those looking to employ the latest and leading analytical software in sport Sports Analytics in Practice with R
Sports Analytics in Practice with R
Sports Analytics in Practice with R
Sports Analytics in Practice with R — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Sports Analytics in Practice with R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
176 168
177 169
178 170
179 171
180 172
181 173
182 174
183 175
184 176
185 177
186 178
187 179
188 180
189 181
190 182
191 183
192 184
193 185
194 186
195 187
196 188
197 189
198 190
199 191
200 192
201 193
202 194
203 195
204 196
205 197
206 198
207 199
208 200
209 201
210 202
211 203
212 204
213 205
214 206
215 207
216 208
217 209
218 210
219 211
220 212
221 213
222 214
223 215
224 216
225 217
226 218
227 219
228 220
229 221
230 222
231 223
232 224
233 225
234 226
235 227
236 228
237 229
238 230
239 231
240 232
241 233
242 234
243 235
244 236
245 237
246 238
247 239
248 241
249 242
250 243
251 244
252 245
253 246
254 247
255 248
256 249
257 250
258 251
259 253
260 254
Preface
Sports is one of the few places where the data and outcomes are well known. Unlike medicine which requires significant subject-matter expertise or business where the data is proprietary in most cases, sports knowledge is relatively accessible, and the data and outcomes are public. As a result, sports analytics serves as a great entry point for many aspiring data scientists and analytics professionals. For the novice, this book demonstrates the many facets and uses of countless techniques applicable outside of sports. It should have more than enough topics and examples to aid learning for general practice. For the avid R programmer and sports fan, the book likely has some new functions and techniques which may be less well known. These readers will delight in improving and expanding the demonstrated methods once the core concepts are understood. Finally, for those already in the sports analytics world the techniques and individual chapter topics can serve as a reference and starting point in their professional analysis. For instance, much of the use cases in the chapters can be adjusted to specific sports or updated by more recent underlying data.
This book has been a long journey in the making. Originally the book’s scope was centered on individualized chapters demonstrating analytical techniques within a sports context. The goal is that a reader inherits various tools that act as a foundation for analysis to build upon and add complexity with subsequent analyses as the reader’s technical acumen and sports interests grow. Each chapter is meant to be a standalone reference as the reader explores and learns. This also frees up the reader to focus on topics of interest. For example, a reader may not want to learn about natural language processing so could skip that chapter altogether to focus on another subject such as optimizing a fantasy football lineup. The book’s undertaking grew in complexity due to a personal commitment to demonstrate concepts on diverse data sets including Paralympic athletes, female soccer and basketball, and less US-centric popular sports including cricket in addition to the more typically demonstrated sports analyses of men’s football, baseball, and basketball. My goal is to make the subject accessible and relevant to many in the analytics field despite this effort slowing the book’s creation. Keep in mind a chapter’s concepts can be applied to many sports domains. For example, the text analysis applied to cricket fan forum posts can easily be applied to men’s basketball fan tweets or forum posts. Each chapter’s takeaway is meant to be a broadly useful tool, not a brittle or narrowly focused analysis. Additionally, the book was delayed due to the pandemic’s effect on the sports-world. Admittedly the shortened seasons, canceled games, and other changes that created outlier statistics pales in comparison to the pandemic’s hardship and humanistic impact outside of sports. Despite these challenges, the book’s end result was worth the delay. The final product covers many diverse concepts, and data, encouraging analytics professionals to enjoy the intersection of sports and analysis.
The book’s supporting website is www.rstatsbook.com. The site contains data and scripts along with any code revisions necessary as functions and packages change. Redundantly, data is shared via git repository at www.github.com/kwartler/Practical_Sports_Analytics.
Author Biography
Ted Kwartler

Adjunct Professor, Harvard University
Ted Kwartleris the VP, Trusted AI at DataRobot. At DataRobot, Ted sets product strategy for explainable and ethical uses of data technology in the company’s application. Ted brings unique insights and experience utilizing data, business acumen, and ethics to his current and previous positions at Liberty Mutual Insurance and Amazon. In addition to having four DataCamp courses, he teaches graduate courses at the Harvard Extension School and is the author of Text Mining in Practice with R.
Analytics don’t work at all. It’s just some crap some people who were really smart made up.
Charles Barkley, former NBA player
Just because you don’t understand something doesn’t mean it’s crap.
Ross Drucker, NBA Future Analytics Stats Program Analyst
My dear Nora & Brenna,
My inspiration and guides. I wrote this book in your honor though don’t expect either of you to follow my footsteps into analysis. Your journey is your own, may you find a passion and, if desirable, have the opportunity to write about it. No matter where your attention and intellect lead you I remain.
Your loving father,
Ted
Foreword
Writing a book is no easy task yet for some reason I decided to write a second! Overall, I am grateful to the countless people that helped me learn, expand, and apply these methods. Data science and analytics is as much as “team sport” as any, where collaboration, communication, and effort often wins the day.
First I would like to acknowledge Jack W, whose intellect and athleticism left us far too early. For anyone struggling with mental health, know that you are loved, you are valuable, and people in your community are here for you. Your passing was a motivating reminder of the short time we have to make contributions along with the need for more kindness toward those that may be suffering silently.
Next, Anup B, one of the most brilliant supportive leaders I have worked for. Not to mention your passion for cricket helped open my eyes to a noteworthy and enjoyable sport. Losing you to the pandemic was a disturbing blow felt by many people who were touched by your intelligence, humor, and positivity.
This entire book would not have been possible without the fine professors at the University of Notre Dame that put me on my own professional journey. I fondly remember building my first logistic regression predicting March Madness after learning these techniques from Dr. Keating, the late Dr. Gilbride, and Dr. Devaraj.
Further I would like to acknowledge my parents, Anatol and Trish, and my endearing wife, Meghan. Your support and patience has been significant. Writing a book is no small undertaking with much of the logistical burden falling to each of you. Completing this book is a shared victory.
Lastly, my sincerest gratitude to the wonderful team at Wiley, particularly Kimberly Monroe-Hill. Your patience and flexibility to late submissions and delayed seasons stemming from the unusual 2020 year in sports (among other more important hardships) has been greatly appreciated. I was ready to give up on the project yet your e-mails demonstrated a commitment from Wiley that I cherish.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Sports Analytics in Practice with R»
Представляем Вашему вниманию похожие книги на «Sports Analytics in Practice with R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Sports Analytics in Practice with R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.