Wearable and Neuronic Antennas for Medical and Wireless Applications

Здесь есть возможность читать онлайн «Wearable and Neuronic Antennas for Medical and Wireless Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wearable and Neuronic Antennas for Medical and Wireless Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wearable and Neuronic Antennas for Medical and Wireless Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

WEARABLE AND NEURONIC ANTENNAS FOR MEDICAL AND WIRELESS APPLICATIONS
This new volume in this exciting new series, written and edited by a group of international experts in the field, covers the latest advances and challenges in wearable and neuronic antennas for medical and wireless applications.

Wearable and Neuronic Antennas for Medical and Wireless Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wearable and Neuronic Antennas for Medical and Wireless Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.5) 16 we can write the combined sampled transmit signal S CN 1 as 17 - фото 8

(1.6) we can write the combined sampled transmit signal S CN 1 as 17 The - фото 9

we can write the combined sampled transmit signal SCN × 1 as

(1.7) Wearable and Neuronic Antennas for Medical and Wireless Applications - изображение 10

The impulse response under multipath fading in a time-variant channel can be expressed as matrix HCN × N , whose entries are given by [2],

(1.8) Wearable and Neuronic Antennas for Medical and Wireless Applications - изображение 11

Finally, the received symbol is projected using received waveform to obtain

(1.9) Wearable and Neuronic Antennas for Medical and Wireless Applications - изображение 12

where nrepresents the additive noise term which is usually modeled as Gaussian random variable.

1.4 Existing Methods for Equalization in FBMC

1.4.1 One-Tap Zero Forcing Equalizer

In [7], a one-tap zero forcing equalizer for the FBMC system is considered. In this work, it is assumed that self-interference is ignored. Thus, the output of the FBMC system can be formulated as:

(1.10) Wearable and Neuronic Antennas for Medical and Wireless Applications - изображение 13

where his the vector obtain by vectorizing the channel matrix H. Thus, if ĥ represents the channel estimate, the output of the one-Tap equalizer will be obtained as:

(1.11) Wearable and Neuronic Antennas for Medical and Wireless Applications - изображение 14

Where hardlimrepresents the hard limiter.

1.4.2 MMSE Block Equalizer

The conventional way to design an MMSE equalizer is to use complex-valued symbols. Unfortunately, this does not work with FBMC-OQAM as this equalizer does not eliminate the imaginary interference. A modified MMSE equalization is formulated to solve this issue by putting real and imaginary parts together using the approach outlined in [11, 13]. This method is termed as full block MMSE equalization whose solution is given by

(1.12) Where 15 Proposed Machine LearningBased FBMC Equalizer In our proposed - фото 15

Where

15 Proposed Machine LearningBased FBMC Equalizer In our proposed - фото 16

1.5 Proposed Machine Learning-Based FBMC Equalizer

In our proposed equalization scheme, we employ support vector machine (SVM) [16] to learn the required estimate using available input and output data. The SVM is a kind of kernel machine learning technique that utilizes a nonlinear mapping of the original training data [16]. It is mainly designed for binary classification, which was later extended to the multi-class problem. In supervised learning, when labeled training data is inputted, SVM outputs an optimal hyperplane, which categorizes new examples [17, 18]. The variants of SVM used in this study are Linear SVM, Quadratic SVM, and Cubic SVM [19, 20].

The main idea of the proposed equalizer is to learn the weight matrix for the FBMC equalizer via SVM using available training data { xtrain, ytrain}. Once the equalizer weight matrix is learned, the estimate for the unknown transmitted data xunknownis obtained by processing the received signal ytestthrough the designed SVM.

1.6 Results and Discussion

This section provides the results of the proposed machine learning-based equalizers for the FBMC system using LSVM, QSVM, and CSVM.

Figure 13BER performance comparison of different equalizers in FBMC system - фото 17

Figure 1.3BER performance comparison of different equalizers in FBMC system.

Table 1.1Performance comparison of SVM based FBMC equalizers.

Performance measure LSVM QSVM CSVM
RMSE 0.005951 0.005096 0.0048182
Training Time (s) 86.167 84.591 68.513

In this context, the FBMC system is simulated for 24 subcarriers and 30-time symbols. The prototype filter used is “Hermite” [13]. The results of BER are compared in Figure 1.3, which shows that the proposed SVM based equalizers have better performance than the full block MMSE equalizer of [13]. Moreover, it can be depicted from the results that the CSVM has the best performance among all the proposed methods.

In Table 1.1, the performances of the proposed SVM based equalizers are compared in terms of their testing RMSE and training time in seconds. Again, CSVM is found to be the best among other variants of SVM.

1.7 Summary

In this chapter, we study various methods of FBMC equalizers. We propose machine learning-based equalization techniques for the FBMC system. For this task, we develop the equalizer using three variants of SVM, namely Linear SVM, Quadratic SVM, and Cubic SVM. The BER performances of these methods are compared with that of the well-known One-Tap and Full Block MMSE equalizers. It was found from the simulation results that the proposed SVM based equalizer has better performance than that of the conventional methods. Moreover, the performances of the SVM based equalizers are compared among themselves in terms of RMSE and training time which shows that the CSVM outperformed the LSVM and QSVM in terms of both the RMSE and training time.

References

1. Farhang-Boroujeny, B., OFDM versus filter Bank multicarrier. IEEE Signal Process. Mag. , 28, 3, 92–112, May 2011.

2. Nissel, R., Schwarz, S., Rupp, M., Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Sel. Areas Commun. , 35, 1768–1782, 8, August 2017.

3. Nissel, R., Caban, S., Rupp, M., Experimental evaluation of FBMC-OQAM channel estimation based on multiple auxiliary symbols, in: IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM) , Rio de Janeiro, Brazil, July 2016.

4. Nissel, R. and Rupp, M., Enabling low-complexity MIMO in FBMCOQAM, in: IEEE Globecom Workshops (GC Wkshps) , Dec 2016.

5. Nissel, R., Z¨ochmann, E., Lerch, M., Caban, S., Rupp, M., Low latency MISO FBMC-OQAM: It works for millimeter waves!, in: IEEE International Microwave Symposium , Honolulu, Hawaii, June 2017.

6. Nissel, R., Blumenstein, J., Rupp, M., Block frequency spreading: A method for low-complexity MIMO in FBMC-OQAM, in: IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) , Sapporo, Japan, Jul 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wearable and Neuronic Antennas for Medical and Wireless Applications»

Представляем Вашему вниманию похожие книги на «Wearable and Neuronic Antennas for Medical and Wireless Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wearable and Neuronic Antennas for Medical and Wireless Applications»

Обсуждение, отзывы о книге «Wearable and Neuronic Antennas for Medical and Wireless Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x