Advanced Analytics and Deep Learning Models

Здесь есть возможность читать онлайн «Advanced Analytics and Deep Learning Models» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Advanced Analytics and Deep Learning Models: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Advanced Analytics and Deep Learning Models»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Advanced Analytics and Deep Learning Models
The book provides readers with an in-depth understanding of concepts and technologies related to the importance of analytics and deep learning in many useful real-world applications such as e-healthcare, transportation, agriculture, stock market, etc.
Audience

Advanced Analytics and Deep Learning Models — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Advanced Analytics and Deep Learning Models», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

20. Nabiyev, V.V., Yapay zeka: İnsan bilgisayar etkileşimi , Seçkin Yayıncılık, Ankara, 2012.

21. Nilsson, J., Voice interfaces: Assessing the potential , Nielsen Norman Group, USA, 2003, Retrieved from http://www.useit.com/alertbox/20030127.htm.

22. Self, J., The defining characteristics of intelligent tutoring systems research: ITSs care, precisely. Int. J. Artif. Intell. Educ. (IJAIED) , 10, 350, 1998.

23. Steenbergen-Hu, S. and Cooper, H., A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. J. Educ. Psychol. , 106 , 2, 331, 2014.

24. Reiland, R., Is Artificial Intelligence the Key to Personalized Education? , Smithsonian Magazine, Smithsonian Magazine, USA, 2018. https://www.smithsonianmag.com/innovation/artificial-intelligencekey-personalized-education-180963172/, on March 15 2018.

25. Lu, X., Natural Language Processing and Intelligent Computer-Assisted Language Learning (ICALL) , The TESOL Encyclopedia of English Language Teaching, USA, 2018.

26. Turovsky, B., Ten years of Google translate , Google Translate Blog, Google, USA, 2016. https://blog.google/products/translate/ten-years-of-google-translate/

27. Turovsky, B., Found in translation: More accurate, fluent sentences in Google Translate , Blog. Google, USA, 15, 2016, https://www.blog.google/products/translate/found-translation-more-accurate-fluentsentences-google-translate/.

28. https://medium.com/@alejandra.riveraUX/adding-a-chat-feature-to-duolingoa-ux-case-study-73175b612120

29. https://images.app.goo.gl/3g7rVCnfyYBBVJZMA

30. https://www.google.co.in/url?sa=i&url=https%3A%2F%2Fwww.smartsheet.com%2Fvoice-assistants-artificial-intelligence&psig=AOvVaw35WNWG91EdKuqWmYVQcvdI&ust=1617361257271000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJC8hq7y3O8CFQAAAAAdAAAAABAD

31. https://www.researchgate.net/profile/Michelle-Cavaleri/publication/320618419/figure/fig2/AS:697745916571656@1543366998696/Grammarly-feedback-Free-version.jpg

32. https://www.intellias.com/ai-nlp-driven-language-learning-app/

33. Burstein, J., Madnani, N., Sabatini, J., McCaffrey, D., Biggers, K., Dreier, K., Generating Language Activities in Real-Time for English Learners using Language Muse, in: Proceedings of the Fourth ACM Conference on Learning Scale (L@S’17) , Association for Computing Machinery, NY, USA, pp. 213–215, 2017, https://dl.acm.org/doi/10.1145/3051457.3053988.

34. Lovett, D., Is Machine Translation a threat to language learning? , The Chronicle of Higher Education, Washington D.C., 2018.

Email : khushboo3133@gmail.com

2

Real Estate Price Prediction Using Machine Learning Algorithms

Palak Furia* and Anand Khandare†

Department of Computer Engineering, Thakur College of Engineering and Technology, Mumbai, India

Abstract

For a long time since the very beginning, a continuous paradigm of selling and buying houses/land has continued to exist. The wealth of a man is often determined by the kind of house he/she buys, but this process had multiple people intermediate. However, with the increase in technology, this barter system has also changed a lot. With PropTech being the new upcoming thing to disrupt in the real estate market, using technology to complete the operations has made buying property very simple. It is seen as part of a digital transformation in the real estate industry, focuses on both the technological and psychological changes of the people involved, and could lead to new functions such as transparency, unprecedented data, statistical data, machine learning, blockchain, and sensors that are part of PropTech.

In India, there are number of websites, which collect the data for properties that are to sell, but there are cases where on different sites price vary for the same apartment, and as a result, there is a lot of obscurity [1, 2]. This project uses machine learning to predict house prices. One heuristic data commonly used in the analysis of housing price deficits is the Bangalore city suburban housing data. Recent analysis has found that prices in that database are highly dependent on size and location. To date, basic algorithms such as linear regression can eliminate errors using both internal and local features. The previous function of forecasting housing prices are basis of retrospective analysis and machine learning [6, 7]. A linear regression model and a decision tree model, using vague assumptions. In addition, a multi-dimensional object model with two training items is used to evaluate house prices where something that predicts the “internal” cost of a house is used, and the non-objective component can count neighbors’ preferences. The aim is to solve the problems of relapse where the target variable is the value and the independent variable region. We have used hot code coding in each of our institutions. The business application of this algorithm is that classified websites can directly use this algorithm to predict the values of new properties that are listed by taking variable input and predicting the correct and appropriate value.

Keywords:Machine learning, clustering algorithm, linear regression, LASSO regression, decision tree, support vector machine, random forest regressor

2.1 Introduction

We are in want of a right prediction at the real estate and the housing marketplace discipline. We see a mechanism that runs all through the residence shopping and promoting; buying a house may be a lifetime purpose for maximum of the people. There are lot of individuals making big errors when buying the houses; the majority are shopping for homes from the people they recognise with the aid of seeing the classified ads and everywhere in the grooves coming across the India. One of the not unusual hassles is shopping for the residences, which are too high priced and no longer really worth it [3]. From claiming valuation structures, additional techniques mirror those natures of asset and those conditions that are provided for [8, 9]. The assets would possibly properly, at the manner, alternate in open market underneath many situations and instances; people are unaware about the contemporary conditions and they start losing their cash [10]. The exchange in cost of residences would affect both the common people together with the financial system of country; to avoid such situations, there is a want of rate prediction. Many techniques are to use within the price prediction.

2.2 Literature Review

Statistical fashions have been a method to analyze and are expecting property expenses for a long term. In the work of Fik et al. (2003), a study to explain the housing costs version was carried out with the aid of studying the impact of vicinity capabilities at the property charges [11] (Piazzesi and Schneider; 2009). For those who foresee product costs in a different way, the association can be quite complicated. Price forecasts are number one within the import commercial enterprise quarter. But, forecasting from deliver call for can be complex due to the fact that there may be a consolidation energy alongside the way. A neural programming model wishes to predict inventory price. This gives an overlap between those shares and blessings.

Authors (Selim, 2009) [12] compared a few studies of artificial neural network deflection using 60% of residential price calculations, and a lot of comparisons have been made by estimating the performance of all their comparisons with different education sizes and choosing statistical lengths.

Authors (Wu and Brynjolfsson, 2009) [15] from MIT made an estimate of the way Google searches for global loan and income. The author is well aware about the near encounters between them in the fee of houses and the love for much priced houses. Data taken from net seek manner search queries the use of Google procedures and with the assistance of actual countrywide harmony-information gather each present of states.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Advanced Analytics and Deep Learning Models»

Представляем Вашему вниманию похожие книги на «Advanced Analytics and Deep Learning Models» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Advanced Analytics and Deep Learning Models»

Обсуждение, отзывы о книге «Advanced Analytics and Deep Learning Models» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x