Advanced Analytics and Deep Learning Models

Здесь есть возможность читать онлайн «Advanced Analytics and Deep Learning Models» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Advanced Analytics and Deep Learning Models: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Advanced Analytics and Deep Learning Models»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Advanced Analytics and Deep Learning Models
The book provides readers with an in-depth understanding of concepts and technologies related to the importance of analytics and deep learning in many useful real-world applications such as e-healthcare, transportation, agriculture, stock market, etc.
Audience

Advanced Analytics and Deep Learning Models — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Advanced Analytics and Deep Learning Models», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Top 10 Main Aspects Extracted

Configuration Dataset Yelp Place, food, service, restaurant, price menu, staff, drink, and lunch
#asp. Sub-asp Yelp TripAdvisor Amazon
10 Y 0.864 0.8245 0.811 TripAdvisor Hotel, room, staff, location, service, breakfast, restaurant, bathroom, price, view
10 N 0.8643 0.8252 0.8117
50 Y 0.8641 0.8254 0.8118 Amazon game, graphic, story, character, player price, gameplay, controller level, and music
50 N 0.8648 0.826 0.8124

It is noted that, to get better efficiency, we need to configure all the datasets in top 10 neighbors.

In the next step, they compared the algorithm with matrix factorization (MF) algorithms for getting better baselines. Besides, it is specified that TripAdvisor dataset has an unchangeable set of six features. For every analysis like “Cleanliness”, “location”, “value”, “service”, “sleep quality”, and “overall”. They have differentiated their way with a MCRS algorithm that depends on those aspects. In Table 3.5, we can see that their method gets the better of against all the baselines. These results surely established that their perception, since they proved that their approach could overpower both strategies exploiting single ratings and MCRS algorithms.

When multiple-criteria user-to-user CF is used as recommender algorithm, then the best overall results are obtained [5].

3.4.2 User Preference Learning in Multi-Criteria Recommendation Using Stacked Autoencoders by Tallapally et al.

Here, they come up with a stacked autoencoders which is a DNN approach to use the multiple-criteria ratings. They implemented a model which is configured to analyze the connection in the middle of every client’s criteria and general rating efficiency. Test outcomes are based on practical datasets like Yahoo! Movies dataset and TripAdvisor dataset. It illustrates that this approach can perform both single-criteria systems and multi-criteria approaches on different performance matrix [4].

Now, if we look on their proposed performance evaluation and result analysis, then it will be cleared that how much efficiency this model can achieve.

3.4.2.1 Dataset and Evaluation Matrix

In this paper, they have used two datasets based on real world from tourism and movie domains that are used to evaluate the performance. They hold on to the sample data of the users who reviewed at least five hotels and hotels that were reviewed by at least five users to obtain working data subset from TA.

They used subset that carry more than 19,000 rating instances by more than 3,100 users with around 3,500 hotels which has a high sparsity of 99.8272%. In addition, YM data are generated as shown in Tables 3.3to 3.5. For analyzing the performance of this method, they used Mean Absolute Error (MAE) which is known for its simplicity, accuracy, and popularity [4].

Table 3.3 Dataset.

Result = YM 10-10

Result = YM 20-20

Technique MAE GIMAE GPIMAE F1 Technique MAE GIMAE GPIMAE F1
MF [10] 0.8478 0.7461 0.6765 0.5998 MF [10] 0.7397 0.6077 0.57 0.6698
2016_Hybrid AE [23] 0.7811 0.6595 0.8269 0.7042 2016_Hybrid AE [23] 0.7205 0.6008 0.783 0.7578
2011_Liwei Liu [13] 0.6574 0.5204 0.6574 0.664 2011_Liwei Liu [13] 0.6576 0.5054 0.6576 0.6828
2017_Learning [22] 0.6576 0.5054 0.6576 0.6629 2017_Learning [22] 0.8254 0.5958 0.8131 0.7544
2017_CCC [27] 0.6374 0.624 0.7857 0.5361 2017_CCC [27] 0.6798 0.6095 0.7159 0.5585
2017_CCA [27] 0.6618 0.6015 0.799 0.5343 2017_CCA [27] 0.6691 0.6042 0.6971 0.5641
2017_CIC [27] 0.6719 0.6542 0.7743 0.5327 2017_CIC [27] 0.7029 0.6218 0.7064 0.5677
Extended_SAE_3 0.5783 0.487 0.6501 0.7113 Extended_SAE_3 0.5906 0.4959 0.6523 0.7973
Extended_SAE_5 0.564 0.4842 0.6503 0.7939 Extended_SAE_5 0.5798 0.4834 0.6306 0.807

Result = TA 5-5

Result = YM 5-5

Technique MAE GIMAE GPIMAE F1 Technique MAE GIMAE GPIMAE F1
MF [10] 1.2077 1.3055 0.8079 0.4491 MF [10] 1.2961 1.2755 0.6204 0.4882
2016_Hybrid AE [23] 0.6531 0.6022 0.8406 0.6789 2016_Hybrid AE [23] 0.7691 0.6314 0.8244 0.6798
2011_Liwei Liu [13] 0.772 0.5262 0.6282 0.6102 2011_Liwei Liu [13] 0.7233 0.575 0.7232 0.6706
2017_Learning [22] 0.6204 0.5907 0.6103 0.6907 2017_Learning [22] 0.6514 0.5019 0.5824 0.7107
2017_CCC [27] 0.6737 0.5878 0.5901 0.4497 2017_CCC [27] 0.6888 0.6242 0.7577 0.538
2017_CCA [27] 0.6914 0.6124 0.6095 0.4826 2017_CCA [27] 0.6891 0.5417 0.5972 0.564
2017_CIC [27] 0.7129 0.6536 0.6814 0.4636 2017_CIC [27] 0.7012 0.642 0.7439 0.537
Extended_SAE_3 0.5674 0.521 0.5379 0.7458 Extended_SAE_3 0.608 0.4636 0.5673 0.7109
Extended_SAE_5 0.5593 0.5075 0.549 0.7384 Extended_SAE_5 0.5854 0.4633 0.5592 0.6073

3.4.2.2 Training Setting

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Advanced Analytics and Deep Learning Models»

Представляем Вашему вниманию похожие книги на «Advanced Analytics and Deep Learning Models» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Advanced Analytics and Deep Learning Models»

Обсуждение, отзывы о книге «Advanced Analytics and Deep Learning Models» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x