Advanced Analytics and Deep Learning Models

Здесь есть возможность читать онлайн «Advanced Analytics and Deep Learning Models» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Advanced Analytics and Deep Learning Models: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Advanced Analytics and Deep Learning Models»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Advanced Analytics and Deep Learning Models
The book provides readers with an in-depth understanding of concepts and technologies related to the importance of analytics and deep learning in many useful real-world applications such as e-healthcare, transportation, agriculture, stock market, etc.
Audience

Advanced Analytics and Deep Learning Models — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Advanced Analytics and Deep Learning Models», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.3.6 Knowledge-Based Filtering Approach

This is comparatively a new approach than other two approaches. This method is used in those cases where both collaborative- and content-based approaches failed or cannot work properly. The situation happens when there is not enough ratings or reviews are at hand for a particular item for the recommendation process. It is generally happening for those that are hardly ever purchased like houses, cars, or financial services. The way this approach works that it extracts the client’s perception for that domain for recommending the items that will satisfy his requirements the best. The core strength or advantage is that it does not need any previous rating of that problem. By using this approach, it can overcome the cold start problem. But it has a disadvantage also that it needs experienced engineering with all its attendant difficulties to understand the item domain satisfactorily [1].

There is another approach in the recommender system known as the hybrid approach. This approach is made to overcome the limitation of both collaborative and content-based filtering approach. It combines the strength of collaborative and content-based approach they are by combining multiple recommendation algorithm’s implementations into a single recommendation system to improve the efficiency of the recommendation system which, in turn, would show better performance. The hybrid approach is generated by combining two or more algorithms. We must take care of two major points over here. First is keeping an account of the recommendation models that declare the required inputs and the determination of the hybrid recommender system. The second point is determining the strategy that will be used within the hybrid recommender. But there are also certain demerits prevailing in this hybrid approach like it not cost-effective, i.e., it is very expensive to implement because it is an amalgamation of other filtering methods. Moreover, it increases the complexity and, sometimes, needs outside data which is unavailable most of the time [1, 18].

3.4 Comparison Among Different Methods

Now, we will make a comparison between some methods used by researchers around the globe and will see about the result of their research.

3.4.1 MCRS Exploiting Aspect-Based Sentiment Analysis

In this research activity, Musto et al . proposed a CF technique based on MCRS, which utilizes the information to analyze users’ interests conveyed by users’ reviews.

In their experimental data analysis, they use many traditional models for evaluation. The outcomes showed the perception in back of this research [5].

Now, if we look in their experimental data analysis, then we can see that they have used three datasets. Those are Yelp, TripAdvisor, and Amazon.

Table 3.1 Dataset statistics.

Yelp TripAdvisor Amazon
Users 45,981 536,952 826,773
Items 11,573 3,945 50,210
Rating/Reviews 229,906 796,958 1,324,759
Sparsity 99.95% 99.96% 99.99%

This framework is mainly for aspect extraction and sentiment analysis. For implementing this, we need different types of parameters. In the first step, we need to remove the words like “a”, “and”, “but”, “how”, “or”, and “what”. In the next step, we need to set the framework in between 10 and 50 for extracting the aspects and sub-aspects. To calculate the efficiency of sub-aspects, the main aspects were extricated, in some experimental session. As per the sentiment analysis algorithmic program, both “CoreNLP” and “AFINN-based” algorithms were used. They set KL-divergence score value as 0.1. They used both user-based and item-based CF system. Previously, they have used an advance version of Euclidean distance, which they introduced as multi-dimensional Euclidean distance for calculating the neighborhood. By their formula for all the dataset, neighborhood size was set to 10, 30, and 80, and they did it because the bigger neighborhoods will reduce in the efficiency of the proposed algorithm [5].

The effectiveness of their algorithmic program was planned by calculating the average of the Mean Average Error (MAE). Rival framework is used to calculate the matrices, to make sure the dependability in results [5].

3.4.1.1 Discussion and Result

In this demonstration, they analyzed discrete arrangements. Those are mainly based on aspect-based sentiment analysis. The results we can see in Tables 3.2and 3.3. They stated the results picked up with AFINN sentiment analysis algorithm, due to space reasons. It did not come out with any major dissimilarity with the CoreNLP algorithm. As it is based on CF user-based approach, on Yelp dataset and Tripadvisor dataset, they took top 10 aspects from the datasets. Besides, the above results are better than the previous 50 aspects. Accordingly, they did not take a bigger space.

One more attractive result comes from the Yelp and TripAdvisor by use of sub-aspect which gave a significant improvement in performance. Here, the maximum efficiency came by using the top 50 aspects. For a better understanding of this, we need to do further investigations [5, 20].

Table 3.2 Result comparison.

Result of MCRS-Based CF Experiment 1

Result of Experiment 2

Configuration Dataset Dataset
#neigh. #asp. Sub-asp Yelp TripAdvisor Amazon Configuration Yelp TripAdvisor Amazon
10 10 Y 0.8362 0.7111 0.6464 Multi-U2U 0.8362 0.7111 0.6276
10 10 N 0.841 0.7564 0.6335 U2U-Euclidean 0.886 0.8337 0.7254
10 50 Y 0.841 0.7269 0.6346 U2U-Pearson 0.964 1.1222 0.9789
10 50 N 0.8364 0.8007 0.6276 Static-Multi-U2U N.A. 0.798 N.A.
30 10 Y 0.8461 0.7677 0.712 Multi-I2I 0.864 0.8245 0.811
30 10 N 0.8473 0.7722 0.7122 I2I-Euclidean 0.8745 0.8429 0.8117
30 50 Y 0.8474 0.7743 0.7101 I2I-Pearson 1.1794 0.8644 0.9679
30 50 N 0.8494 0.8003 0.714 Static-Multi-I2I N.A. 0.8474 N.A.
80 10 Y 0.8579 0.7971 0.7584 RatingSGD 0.8409 0.745 0.8859
80 10 N 0.8592 0.7953 0.7554 ParallelSGD 0.8409 0.7449 0.8852
80 50 Y 0.859 0.7907 0.7544 ALSWR 0.9545 0.9053 1.0354
80 50 N 0.8597 0.7995 0.7544

Result of MCRS Item–Based CF

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Advanced Analytics and Deep Learning Models»

Представляем Вашему вниманию похожие книги на «Advanced Analytics and Deep Learning Models» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Advanced Analytics and Deep Learning Models»

Обсуждение, отзывы о книге «Advanced Analytics and Deep Learning Models» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x