Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics

Здесь есть возможность читать онлайн «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

BIG DATA ANALYTICS AND MACHINE INTELLIGENCE IN BIOMEDICAL AND HEALTH INFORMATICS
Provides coverage of developments and state-of-the-art methods in the broad and diversified data analytics field and applicable areas such as big data analytics, data mining, and machine intelligence in biomedical and health informatics.
Audience Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2 Big Data in Healthcare

The term “Big Data” refers to the volume, velocity, and variety of data generated over time by healthcare providers and containing information pertinent to a patient’s care, such as demographics, diagnoses, medical procedures, medications, vital signs, immunizations, laboratory results, and radiology images. Figure 1.1depicts above mentioned healthcare entities.

Figure 11 Big data in healthcare Figure 12 Five vs of big data - фото 2

Figure 1.1 Big data in healthcare.

Figure 12 Five vs of big data According to Thota et al 1 electronic - фото 3

Figure 1.2 Five vs of big data.

According to Thota et al . [1], electronic health sources such as sensor devices, streaming machines, and high-throughput instruments are accumulating more data as medical data collection advances. This big data in healthcare is used for a variety of purposes, including diagnosis, drug discovery, precision medicine, and disease prediction. Big data has been critical in a variety of fields, including healthcare, scientific research, industry, social networking, and government administration [1]. The five Vs of big data are as follows as shown in the Figure 1.2for better understanding:

1 1. Variety: Without a doubt, the variety of data represents big data. For instance, among the various data formats are database, excel, and CSV, all of which can be stored in a plain text file. Additionally, structured, unstructured, and semi-structured health data exist. Clinical data is an example of structured information; however, unstructured or semi-structured data includes doctor notes, paper prescriptions, office medical records, images, and radio-graph films.

2 2. Veracity: This data’s legitimacy in the form of veracity can be challenged only if it is inaccurate. It is not about the accuracy of the data; it is about the capacity to process and interpretation of data. In healthcare, the trustworthiness function gives details on correct diagnosis, treatment, appropriate prescriptions, or otherwise established health outcomes.

3 3. Volume: Without a doubt, the large volume represents large amounts of data. To process massive amounts of data such as text, audio, video, and large-format images, existing data processing platforms and techniques must be strengthened. Personal information, radiology images, personal medical records, genomics, and biometric sensor readings, among other things, are gradually integrated into a healthcare database. All of this information adds significantly to the database’s size and complexity.

4 4. Velocity: Big data is completely represented by the amount of information produced every second is considered as velocity. The information burst of social media has brought about a wide range of new and interesting data. Data on overall health condition and growth of the plant size and food bacteria are stored on paper, as well as various X-ray images and written reports, is up dramatically.

5 5. Value: Big data truly embodies the value of data. When it comes to big data analytics, the benefits and costs of analyzing and collecting big data are more important. In healthcare, the creation of value for patients should dictate how all other actors in the system are compensated. The primary goal of healthcare delivery must be to maximize value for patients.

1.3 Areas of Big Data Analytics in Medicine

It is of critical importance to pay attention to a multitude of events that impact the health, both physiologically and pathologically. Occurring at once and expressed in various ways (systemic) aspects of the body lead to interaction between different cardiovascular parameters (i.e. such as minute ventilation and blood pressure) which results in accurate clinical evaluation. As a result, understanding and predicting diseases necessitate an integrated data collection of both structured and unstructured methods that draw on the enormous spectrum of clinical and non-clinical data to create a more thorough picture of disease depiction. Big data analytics has recently made its entrance into the healthcare industry, medical researchers are excited about an entirely new aspect of this research known as incorporating the newer concepts. Researchers are conducting research on healthcare data pertaining to both the data itself and the taxonomy of useful analytics that can be done on it.

Figure 13 Areas of big data analytics in medicine Expanding on this one would - фото 4

Figure 1.3 Areas of big data analytics in medicine.

Expanding on this one would include three areas of big data analytics in medicine which is discussed in this chapter. These three research areas do not comprehensively showcase the many ways big data analytics are applied in medicine; instead, they provide a collection of loosely defined use cases where big data analytics is being employed as shown in Figure 1.3.

1.3.1 Genomics

In [2] the author suggested that the estimated price of sequencing the human DNA (the “combing cost” of) has dropped significantly in the past few years [cost to combing the 30,000 to 35,000 gene map is now inversely proportional to how many genes are found] on the grand scale, and as it is to computational biology, developing genome-scale solutions that are applied to the field of public health can have implications for current and future public health policies and services. In 2013 [3] researcher claimed that, the most important factor in making recommendations in a clinical setting is the cost and time to put them in place. Prospective/preventive, and proctical health-focused strategies aim to acquire information on 100,000 individuals for more than two decades, known as P4-predicted (stating only if it is possible); research using the predictive-targeted, or integrated omics, referred to as personalomics (using your personal data). In [4] the author suggested to include seeking solutions over with regard to the following four aspects such as:

1 1. Developing scalable genome-scale data states

2 2. Use of tools

3 3. Clinical states

4 4. Data challenges in target validation, and integration, a big data project.

Project (P4) is making strides by acquiring tools to help with handling massive datasets, and then, following this, they have developed continuous monitoring tools that aid in understanding a subject’s condition, as well as obtaining new information, and they are moving forward in their search for medication delivery and analytical tools. Everything that is known about a person’s physiology and his/her physiological states in-based person wellness is summarized and is added to person omics (usage-driven genomics methods) which are used to identify and detail the subject’s medical state [5]. Although an actionable course of action at the level of care may be one of the most difficult aspects, many improvements at the clinical level can be pursued (even though it may be arduous). According to [6], a lot of high-resolution data is required for exploration, discovery, and implementing novel approaches. These two aspects of big data necessitate the use of novel data analytics.

1.3.2 Signal Processing

Medical signals like medical images present volume and velocity challenges, most notably during continuous, high-resolution acquisition and storage from a plethora of monitors connected to each patient. Additionally, the problem of size is posed by physiological signals in that they possess a size/physical dimension in time and space. In order to derive the most useable and appropriate responses from physiological data, an individual must be aware of the circumstances that are affecting the measurements and have continual monitoring to be established in place to assure effective use and robustness, rigorous monitoring of those variables is required.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»

Представляем Вашему вниманию похожие книги на «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»

Обсуждение, отзывы о книге «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x