8 Chapter 8Figure 8.1 Structure of blockchain.Figure 8.2 Layered approach for stakeholders.Figure 8.3 Data divided among various stakeholders.Figure 8.4 Ethereum Blockchain for patient–doctor interaction.Figure 8.5 Ethereum Blockchain use case for patient, doctor and pharmacy interac...Figure 8.6 Flow of process for reports.Figure 8.7 Drug inventory and supply chain management.Figure 8.8 Workflow of the health insurance companies.Figure 8.9 Flowchart for automated flow of diagnosis.
9 Chapter 9Figure 9.1 Proposed architecture for level visualization.Figure 9.2 Contact rate estimator.Figure 9.3 Epidemiological layer.Figure 9.4 Relative errors of the prediction of the number of infected, recovere...Figure 9.5 Relative error of the number of infected patients compared with SIDAR...Figure 9.6 Illustrates a sharp drop in contact rate over lockdown.Figure 9.7 Analysis of the predicted total number of infected individuals by dec...
10 Chapter 10Figure 10.1 e-Health working process with doctor communicates the prescription t...Figure 10.2 Big Data-Data Processing. Image Source: https://www.congruentsoft.co...
11 Chapter 11Figure 11.1 Potential continual learning algorithms.Figure 11.2 The four stages of drug development, along with Phase IV.Figure 11.3 Drug development cost.Figure 11.4 Stages of ML in radiology.Figure 11.5 Medical imaging AI specialists by clinical application.Figure 11.6 Medical imaging AI specialists by clinical application department wi...Figure 11.7 Digital pathology market maturity and growth forecast.Figure 11.8 Centralized clinical data hubs.
12 Chapter 12Figure 12.1 Conceptual framework from literature review.
1 Chapter 2 Table 2.1 Variables description. Table 2.2 Bivariate logistic regression with AOR to distribution of child alive ... Table 2.3 Ranked Boruta features importance result. Table 2.4 Data imbalance sampling technique result. Table 2.5 Comparing sampling method. Table 2.6 Performance of Naïve Bayes classifier. Table 2.7 Performance of C5.0 classifier. Table 2.8 Confusion Matrix of SVM Imbalanced data. Table 2.9 Performance of SVM on prediction on imbalanced data. Table 2.10 Confusion Matrix for SVM balanced data. Table 2.11 Performance of SVM on prediction on balanced data. Table 2.12 Performance of Random Forest classifier. Table 2.13 10-fold cross-validation on imbalance target data. Table 2.14 10-fold cross-validation on balance target data.
2 Chapter 3Table 3.1 Individual’s demographics and their dementia status.Table 3.2 Basic characteristics’ of MRI with Clinical Dementia Rating (CDR).Table 3.3 Descriptive quantitative variables (n = 373).Table 3.4 Actual vs Predicted.Table 3.5 Accuracies of different algorithms.Table 3.6 Training status.Table 3.7 Comparison of transfer learning pretrained CNN learners.
3 Chapter 4Table 4.1 Comparison of proposed method [18] with other segmentation methods usi...Table 4.2 The results of OC segmentation of proposed method [34] using a differe...
4 Chapter 5Table 5.1 Several soft technologies to fulfil various objectives.Table 5.2 Several examples of AI and ML approaches in healthcare.Table 5.3 Information of cancer disease with approaches and dataset.Table 5.4 Various big data analytics tools with functionalities.
5 Chapter 7Table 7.1 Notations used in the proposed algorithms.
6 Chapter 9Table 9.1 Dataset description.Table 9.2 Regional and provincial data are also presented in Table 9.2.
7 Chapter 11Table 11.1 Adoption index for ‘ologies’.
1 Cover
2 Table of Contents
3 Title Page
4 Copyright
5 Preface
6 Begin Reading
7 Index
8 End User License Agreement
1 v
2 ii
3 iii
4 iv
5 xiii
6 xiv
7 xv
8 xvi
9 xvii
10 xviii
11 xix
12 1
13 2
14 3
15 4
16 5
17 6
18 7
19 8
20 9
21 10
22 11
23 12
24 13
25 14
26 15
27 16
28 17
29 18
30 19
31 20
32 21
33 22
34 23
35 24
36 25
37 26
38 30
39 27
40 28
41 29
42 31
43 32
44 33
45 34
46 35
47 36
48 37
49 38
50 39
51 40
52 41
53 42
54 43
55 44
56 45
57 47
58 48
59 49
60 50
61 51
62 52
63 53
64 54
65 55
66 56
67 57
68 58
69 59
70 60
71 61
72 62
73 63
74 64
75 65
76 66
77 67
78 68
79 69
80 70
81 71
82 72
83 73
84 74
85 75
86 76
87 77
88 78
89 79
90 80
91 81
92 82
93 83
94 84
95 85
96 86
97 87
98 88
99 89
100 90
101 91
102 92
103 93
104 94
105 95
106 97
107 98
108 99
109 100
110 101
111 102
112 103
113 104
114 105
115 106
116 107
117 108
118 109
119 110
120 111
121 112
122 113
123 114
124 115
125 116
126 117
127 118
128 119
129 120
130 121
131 122
132 123
133 124
134 125
135 126
136 127
137 128
138 129
139 130
140 131
141 132
142 133
143 134
144 135
145 136
146 137
147 138
148 139
149 140
150 141
151 142
152 143
153 144
154 145
155 146
156 147
157 148
158 149
159 150
160 151
161 152
162 153
163 154
164 155
165 156
166 157
167 158
168 159
169 160
170 161
171 162
172 163
173 164
174 165
175 166
176 167
177 168
178 169
179 170
180 171
181 172
182 173
183 174
184 175
185 176
186 177
187 178
188 179
189 180
190 181
191 182
192 183
193 184
194 185
195 186
196 187
197 188
198 189
199 190
200 191
201 192
202 193
203 194
204 195
205 196
206 197
207 198
208 199
209 200
210 201
211 202
212 203
213 205
214 206
215 207
216 208
217 209
218 210
219 211
220 212
221 213
222 214
223 215
224 216
225 217
226 218
227 219
228 220
229 221
230 222
231 223
232 224
233 225
234 226
235 227
236 228
237 229
238 230
239 231
240 232
241 233
242 234
243 235
244 236
245 237
246 238
247 239
248 240
249 241
250 242
251 243
252 244
253 245
254 246
255 247
256 248
257 249
258 250
259 251
260 252
261 253
262 254
263 255
264 257
265 258
266 259
267 260
268 261
269 262
270 263
271 264
272 265
273 266
274 267
275 268
276 269
277 270
278 271
279 272
280 273
281 275
282 276
283 277
284 278
285 279
286 280
287 281
288 282
289 283
290 284
291 285
292 286
293 287
294 288
295 289
296 290
297 291
298 292
299 293
300 294
301 295
302 296
303 297
304 298
305 299
306 300
307 301
308 302
309 303
310 305
311 306
312 307
Читать дальше