Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics

Здесь есть возможность читать онлайн «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

BIG DATA ANALYTICS AND MACHINE INTELLIGENCE IN BIOMEDICAL AND HEALTH INFORMATICS
Provides coverage of developments and state-of-the-art methods in the broad and diversified data analytics field and applicable areas such as big data analytics, data mining, and machine intelligence in biomedical and health informatics.
Audience Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.7 Big Data Privacy and Security

In the survey paper [22] Archenaa et al . clearly mentioned that two critical issues in the healthcare and medical analytics sphere in regard to big data are the privacy of patients and the protection of personal data and information. While each country views this information as having a rightful claim to medical data, medical data are indeed very private and confidential, and no information is really safe [23]. A solution to these difficulties, which means the software should be used advanced and able to obfuscate identity data, needs to use effective encryption algorithms and, alternatively, anonymize itation. In order to achieve all of these goals, software should offer enhanced security and strict access controls that give the end users/clients the appropriate levels of protection, it must also have excellent governance controls that make sure user privacy and control is maintained.

1.8 Conclusion

The use of big data analytics in medicine and healthcare is incredibly powerful, productive, interesting, and diverse. It integrates heterogeneous data like medical records, experimental, electronic health, and social data in order to explore the relations among the different characteristics and traces of data points like diagnoses and medication dosages, along with information such as public chatter to derive conclusions about outcomes. More diverse data needs to be combined into big data analysis, such as biosciences, sensor informatics, medical informatics, bioinformatics, and health computational biomedicine to get the truth out of its information.

1.9 Future Work

As a future endeavor, the characteristics of big data provide an excellent foundation for developing applications that can handle big data in medicine and healthcare using promising software platforms. One such platform is Apache Hadoop Map Reduce, an open-source distributed data processing platform that makes use of massive parallel processing (MPP). These applications should enable data mining techniques to be applied to these heterogeneous and complex data in order to uncover hidden patterns and novel knowledge. Recent advancements in processor technology, newer types of memories, and network architecture will reduce the time required to transfer data from storage to the processor in a distributed environment.

References

1. Manogaran, G., Lopez, D., Thota, C., Abbas, K.M., Pyne, S., Sundarasekar, R., Big data analytics in healthcare internet of things, in: Innovative healthcare systems for the 21st century , pp. 263–284, Springer International Publishing, 2017.

2. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al ., Initial sequencing and analysis of the human genome, Nature , 409, 6822, 2001.

3. Caulfield, T., Evans, J., McGuire, A., McCabe, C., Bubela, T., Cook-Deegan, R., Fishman, J., Hogarth, S., Miller, F.A., Ravitsky, V. et al ., Reflections on the cost of “low-cost” whole genome sequencing: framing the health policy debate. PloS Biol ., 11, 11, e1001699, 2013.

4. Hood, L. and Friend, S.H., Predictive, personalized, preventive, participatory (p4) cancer medicine. Nat. Rev. Clin. Oncol ., 8, 3, 184–187, 2011.

5. Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y.K., Chen, R., Miriami, E., Karczewski, K.J., Hariharan, M., Dewey, F.E. et al ., Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell , 148, 1293–1307, 2012.

6. Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B., Bioinformatics challenges for personalized medicine. Bioinformatics , 27, 13, 1741–1748, 2011.

7. Cvach, M., Monitor alarm fatigue: An integrative review. Biomed. Instrum. Technol ., 46, 4, 268–277, 2012.

8. Drew, B.J., Harris, P., Z`egre-Hemsey, J.K., Mammone, T., Schindler, D., Salas-Boni, R., Bai, Y., Tinoco, A., Ding, Q. and Hu, X., Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients. PloS One , 9, 10, e110274, 2014.

9. Graham, K.C. and Cvach, N., Monitor alarm fatigue: Standardizing use of physiological monitors and decreasing nuisance alarms. Am. J. Crit. Care , 19, 1, 28–34, 2010.

10. Rothschild, J.M., Landrigan, C.P., Cronin, J.W., Kaushal, R., Lockley, S.W., Burdick, E., Stone, P.H., Lilly, C.M., Katz, J.T., Czeisler, C.A. et al ., The critical care safety study: The incidence and nature of adverse events and serious medical errors in intensive care. Read Online: Crit. Care Med.—Soc. Crit. Care Med ., 33, 8, 1694–1700, 2005.

11. Carayon, P. and G¨urses, A.P., A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units. Intensive Crit. Care Nurs ., 21, 5, 284–301, 2005.

12. Carayon, P., Human factors of complex sociotechnical systems. Appl. Ergon ., 37, 4, 525–535, 2006.

13. Baxter, J.S.H., Gibson, E., Eagleson, R., Peters, T.M., The semiotics of medical image segmentation. Med. Image Anal ., 44, 54–71, 2018.

14. Seibert, J.A., Modalities and data acquisition, in: Practical Imaging Informatics , pp. 49–66, Springer, New York, 2009.

15. Oyelade, J., Soyemi, J., Isewon, I., and Obembe, O., Bioinformatics, healthcare informatics and analytics: An imperative for improved healthcare system. Int. J. Appl. Inf. Syst ., 13, 5, 1–6, 2015.

16. Kannampallil, T.G., Franklin, A., Cohen, T., Buchman, T.G., Sub-optimal patterns of information use: A rational analysis of information seeking behavior in critical care, in: Cognitive Informatics in Health and Biomedicine , pp. 389–408, Springer, London, 2014.

17. DCC AOCNP, The evolution of the electronic health record. Clin. J. Oncol. Nurs ., 19, 2, 153, 2015.

18. Gillum, R.F., From papyrus to the electronic tablet: A brief history of the clinical medical record with lessons for the digital age. Am. J. Med ., 126, 10, 853–857, 2013.

19. Reiser, S.J., The clinical record in medicine part 1: Learning from cases. Ann. Intern. Med ., 114, 10, 902–907, 1991.

20. Wu, P.-Y., Cheng, C.-W., Kaddi, C.D., Venugopalan, J., Hoffman, R., Wang, M.D., -omic and electronic health record big data analytics for precision medicine. IEEE Trans. Biomed. Eng ., 64, 2, 263–273, 2016.

21. Luo, J., Wu, M., Gopukumar, D., Zhao, Y., Big data application in biomedical research and healthcare: A literature review. Biomed. Inform. Insights , 8, BII–S31559, 2016.

22. Archenaa, J. and Anita, E.A.M., A survey of big data analytics in healthcare and government. Proc. Comput. Sci ., 50, 408–413, 2015.

23. Viceconti, M. and Hunter, P., and Hose, R., Big data, big knowledge: Big data for personalized healthcare. IEEE J. Biomed. Health Inform ., 19, 4, 1209–1215, 2015.

1 *Email: anil.pise@thefinalmile.com

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»

Представляем Вашему вниманию похожие книги на «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics»

Обсуждение, отзывы о книге «Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x