Catalytic Asymmetric Synthesis

Здесь есть возможность читать онлайн «Catalytic Asymmetric Synthesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Catalytic Asymmetric Synthesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Catalytic Asymmetric Synthesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today
Catalytic Asymmetric Synthesis

Catalytic Asymmetric Synthesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Catalytic Asymmetric Synthesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Source: Based on [183].

Scheme 456 Enantioselective transformations catalyzed by BINOLderived - фото 301

Scheme 4.56. Enantioselective transformations catalyzed by BINOL‐derived silane‐diols.

Source: Based on [191].

4.3.7.3. Asymmetric Ring Opening of Strained Heterocycles

In 2012, the Jacobsen group demonstrated that hydrogen bonding catalysts could affect the asymmetric ring opening of episulfonium cations with indoles ( Scheme 4.57) [193]. The source of the enantioselectivity was proposed to be an ensemble of electrostatic, cation‐π, and hydrogen‐bonding interactions between the anion‐bound catalyst, indole, and episulfonium. The Gouverneur lab extended this reactivity to utilizing fluoride as the nucleophile, a notoriously challenging fluorine source for asymmetric fluorination reactions [194]. Other advances in the field include an asymmetric selenocyclization through the intermediacy of a seleniranium ion‐pair [195]. It was shown that the seleniranium readily interconverts between two enantiomers via group transfer, allowing for a Curtin‐Hammett situation that determines the enantioselectivity of the reaction.

4.4. CONCLUSION

Since the initial reports of chiral cation phase‐transfer catalysis, there has been an exponential growth in the number of key strategies available for asymmetric induction of reactions involving ion‐pairing. Currently, there is a push to better understand the mechanistic interplay between the chiral ion, its achiral counterion, and the substrate. This has taken the form of utilizing traditional transition state analysis by DFT, as well as newer data‐intensive approaches that focus on linear‐regression analysis. Another major area of current focus is utilizing these interesting noncovalent effects in combination with the unique reactivity of transition‐metal catalysis, to yield novel enantioselective methodologies.

Scheme 457 Asymmetric ring opening of strained heterocycles by anionbinding - фото 302

Scheme 4.57. Asymmetric ring opening of strained heterocycles by anion‐binding catalysis.

Source: Based on [193].

REFERENCES

1 1. Dolling, U. H. ; Davis, P. ; Grabowski, E. J. J. J. Am. Chem. Soc. 1984, 106, 446–447.

2 2. Hughes, D. L. ; Dolling, U. H. ; Ryan, K. M. ; Schoenewaldt, E. F. ; Grabowski, E. J. J. J. Org. Chem. 1987, 52, 4745–4752.

3 3. O’Donnell, M. J. ; Bennett, W. D. ; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353–2355.

4 4. Lygo, B. ; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595–8598.

5 5. Lygo, B. ; Crosby, J. ; Lowdon, T. R. ; Wainwright, P. G. Tetrahedron 2001, 57, 2391–2402.

6 6. Lygo, B. ; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518–525.

7 7. Corey, E. J. ; Xu, F. ; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414–12415.

8 8. Corey, E. J. ; Bo, Y. ; Busch‐Petersen, J. J. Am. Chem. Soc. 1998, 120, 13000–13001.

9 9. Jew, S.‐S. ; Yoo, M.‐S. ; Jeong, B.‐S. ; Park, I. Y. ; Park, H.‐G. Org. Lett. 2002, 4, 4245–4248.

10 10. Jew, S.‐S. ; Jeong, B.‐S. ; Yoo, M.‐S. ; Huh, H. ; Park, H.‐G. Chem. Commun. 2001, 1244–1245.

11 11. Park, H.‐G. ; Jeong, B.‐S. ; Yoo, M.‐S. ; Park, M.‐K. ; Huh, H. ; Jew, S.‐S. Tetrahedron Lett. 2001, 42, 4645–4648.

12 12. Ooi, T. ; Kameda, M. ; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519–6520.

13 13. Ooi, T. ; Uematsu, Y. ; Kameda, M. ; Maruoka, K. Angew. Chem. Int. Ed. 2002, 41, 1551–1554.

14 14. Lygo, B. ; Allbutt, B. ; James, S. R. Tetrahedron Lett. 2003, 44, 5629–5632.

15 15. Shibuguchi, T. ; Fukuta, Y. ; Akachi, Y. ; Sekine, A. ; Ohshima, T. ; Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539–9543.

16 16. Ohshima, T. ; Gnanadesikan, V. ; Shibuguchi, T. ; Fukuta, Y. ; Nemoto, T. ; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 11206–11207.

17 17. Ohshima, T. ; Shibuguchi, T. ; Fukuta, Y. ; Shibasaki, M. Tetrahedron 2004, 60, 7743–7754.

18 18. Sasai, H. (2003). Quaternary ammonium salt having spirochirality and its utilization. Mitsubishi Chem. Corp., JP2003335780.

19 19. Kita, T. ; Georgieva, A. ; Hashimoto, Y. ; Nakata, T. ; Nagasawa, K. Angew. Chem. Int. Ed. 2002, 41, 2832–2834.

20 20. Denmark, S. E. ; Gould, N. D. ; Wolf, L. M. J. Org. Chem. 2011, 76, 4260–4336.

21 21. Wen, S. ; Li, X. ; Lu, Y. Asian J. Org. Chem. 2016, 5, 1457–1460.

22 22. O’Donnell, M. J. Tetrahedron 2019, 75, 3667–3696.

23 23. O’Donnell, M. J. ; Wu, S. Tetrahedron Asymmetry 1992, 3, 591–594.

24 24. Lygo, B. ; Crosby, J. ; Peterson, J. A. Tetrahedron Lett. 1999, 40, 8671–8674.

25 25. Jew, S.‐S. ; Jeong, B.‐S. ; Lee, J.‐H. ; Yoo, M.‐S. ; Lee, Y.‐J. ; Park, B.‐S. ; Kim, M. G. ; Park, H.‐G. J. Org. Chem. 2003, 68, 4514–4516.

26 26. Ooi, T. ; Takeuchi, M. ; Kameda, M. ; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228–5229.

27 27. Kitamura, M. ; Shirakawa, S. ; Maruoka, K. Angew. Chem. Int. Ed. 2005, 44, 1549–1551.

28 28. Hashimoto, T. ; Maruoka, K. Chem. Rev. 2007, 107, 5656–5682.

29 29. Jolliffe, J. D. ; Armstrong, R. J. ; Smith, M. D. Nat. Chem. 2017, 9, 558–562.

30 30. Li, H. ; Fan, W. ; Hong, X. Org. Biomol. Chem. 2019, 17, 1916–1923.

31 31. Corey, E. J. ; Noe, M. C. ; Xu, F. Tetrahedron Lett. 1998, 39, 5347–5350.

32 32. Zhang, F. Y. ; Corey, E. J. Org. Lett. 2000, 2, 1097–1100.

33 33. Arai, S. ; Tsuji, R. ; Nishida, A. Tetrahedron Lett. 2002, 43, 9535–9537.

34 34. He, R. ; Shirakawa, S. ; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620–16621.

35 35. Wang, L. ; Shirakawa, S. ; Maruoka, K. Angew. Chem. Int. Ed. 2011, 50, 5327–5330.

36 36. Shirikawa, S. ; Wang, L. ; He, R. ; Arimitsu, S. ; Maruoka, M. Chem. Asian J. 2014, 9, 1586–1593.

37 37. Shirakawa, S. ; Terao, S. J. ; He, R. ; Maruoka, K. Chem. Commun. 2011, 47, 10557–10559

38 38. Liu, S. ; Maruoka, K. ; Shirakawa, S. Angew. Chem. Int. Ed. 2017, 56, 4819–4823.

39 39. Shirakawa, S. ; Ota, K. ; Terao, S. J. ; Maruoka, K. Org. Biomol. Chem. 2012, 10, 5753–5756.

40 40. Shirakawa, S. ; Maruoka, K. Tetrahedron Lett. 2014, 55, 3833–3839.

41 41. Arai, S. ; Tsuge, H. ; Shioiri, T. Tetrahedron Lett. 1998, 39, 7563–7566.

42 42. Arai, S. ; Tsuge, H. ; Oku, M. ; Miura, M. ; Shioiri, T. Tetrahedron 2002, 58, 1623–1630.

43 43. Jew, S.‐S. ; Lee, J.‐H. ; Jeong, B.‐S. ; Yoo, M.‐S. ; Kim, M.‐J. ; Lee, Y.‐J. ; Lee, J. ; Choi, S.‐H. ; Lee, K. ; Lah, M. S. ; Park, H.‐G. Angew. Chem. Int. Ed. 2005, 44, 1383–1385.

44 44. Hori, K. ; Tamura, M. ; Tani, K. ; Nishiwaki, N. ; Ariga, M. ; Tohda, Y. Tetrahedron Lett. 2006, 47, 3115–3118.

45 45. Allingham, M. T. ; Howard‐Jones, A. ; Murphy, P. J. ; Thomas, D. A. ; Caulkett, P. W. R. Tetrahedron Lett. 2003, 44, 8677–8680.

46 46. Ooi, T. ; Ohara, D. ; Tamura, M. ; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 6844–6845.

47 47. Corey, E. J. ; Zhang, F.‐Y. Org. Lett. 1999, 1, 1287–1290.

48 48. Aires‐de‐Sousa, J. ; Lobo, A. M. ; Prabhakar, S. Tetrahedron Lett. 1996, 37, 3183–3186.

49 49. Murugan, E. ; Siva, A. Synthesis 2005, 12, 2022–2028.

50 50. Mahé, O. ; Dez, I. ; Levacher, V. ; Brière, J.‐F. Angew. Chem. Int. Ed. 2010, 49, 7072–7075.

51 51. Gasparski, C. M. ; Miller, M. J. Tetrahedron 1991, 47, 5367–5378.

52 52. Mettath, S. ; Srikanth, G. S. C. ; Dangerfield, B. S. ; Castle, S. L. J. Org. Chem. 2004, 69, 6489–6492.

53 53. Ooi, T. ; Taniguchi, M. ; Kameda, M. ; Maruoka, K. Angew. Chem. Int. Ed. 2002, 41, 4542–4544.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Catalytic Asymmetric Synthesis»

Представляем Вашему вниманию похожие книги на «Catalytic Asymmetric Synthesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Catalytic Asymmetric Synthesis»

Обсуждение, отзывы о книге «Catalytic Asymmetric Synthesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x