Neil McCartney - Properties for Design of Composite Structures

Здесь есть возможность читать онлайн «Neil McCartney - Properties for Design of Composite Structures» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Properties for Design of Composite Structures: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Properties for Design of Composite Structures»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

PROPERTIES FOR DESIGN OF COMPOSITE STRUCTURES
A comprehensive guide to analytical methods and source code to predict the behavior of undamaged and damaged composite materials Properties for Design of Composite Structures: Theory and Implementation Using Software
Properties for Design of Composite Structures: Theory and Implementation Using Software

Properties for Design of Composite Structures — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Properties for Design of Composite Structures», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

21 The three coordinates x1x2x3 describe the location of a point xthat - фото 2(2.1)

The three coordinates (x1,x2,x3) describe the location of a point xthat is known as the position vector, which may be written as x=x1i1+x2i2+x3i3. In tensor theory based on Cartesian coordinates, this is written in the shorter form x=xkik where a summation over values k = 1, 2, 3 is implied when a suffix is repeated ( k in this example). Any vector v may be written as v=v1i1+v2i2+v3i3, or as v=vkik when using tensor notation. The scalar quantities vk, k = 1, 2, 3, are the components of the vector v with values depending on the choice of coordinates. The magnitude of the vector v is specified by

Properties for Design of Composite Structures - изображение 3(2.2)

and its value is independent of the system of coordinates that is selected. The magnitude is, thus, an invariant of the vector.

The unit vector in the direction of the vector v is specified by v/|v|. Examples of vectors that occur in the physical world are forces, displacements, velocities and tractions.

2.3 Tensors

The tensors to be used in the book are either second order or fourth order. Tensors are usually physical quantities that are independent of the coordinate system that is used to describe their properties. For the given coordinate system having unit vectors i1, i2and i3, a second-order tensor tis expressed in terms of the unit vectors as follows:

23 or more compactly using tensor notation in the form 24 where - фото 4(2.3)

or, more compactly, using tensor notation in the form

картинка 5(2.4)

where summation over values 1, 2, 3 is implied by the repeated suffices j and k . The quantities tjk are known as the components of a second-order tensor with values depending on the choice of coordinates. There are three independent invariants of second-order tensors which can be expressed in a variety of forms, the simplest being

Properties for Design of Composite Structures - изображение 6(2.5)

A fourth-order tensor Tis expressed in terms of the unit vectors of the coordinate system as follows

Properties for Design of Composite Structures - изображение 7(2.6)

where summation over values 1, 2, 3, is implied by the repeated suffices i , j , k and l . The quantities Tijkl are known as the components of a fourth-order tensor with values depending on the choice of coordinates.

2.3.1 Fourth-order Elasticity Tensors

Elastic stress-strain equations are often written in the following form (see, for example, ( 2.153) and ( 2.154) given later in the chapter which includes thermal terms).

Properties for Design of Composite Structures - изображение 8(2.7)

It is clear that

Properties for Design of Composite Structures - изображение 9(2.8)

which may be written as

Properties for Design of Composite Structures - изображение 10(2.9)

where

Properties for Design of Composite Structures - изображение 11(2.10)

The fourth-order tensor Iijmn can be defined by

211 where δij denotes the Kronecker delta symbol which has the value unity - фото 12(2.11)

where δij denotes the Kronecker delta symbol which has the value unity when i = j and the value zero otherwise. Clearly

212 The identity tensor defined by 211 does not exhibit the same - фото 13(2.12)

The identity tensor defined by ( 2.11) does not exhibit the same symmetry as the stiffness and compliance tensors, which are such that

Properties for Design of Composite Structures - изображение 14(2.13)

It is noted that

Properties for Design of Composite Structures - изображение 15(2.14)

indicating that Iijmn≠Ijimn and Iijmn≠Ijinm.

A symmetric fourth-order identity tensor may be defined by

Properties for Design of Composite Structures - изображение 16(2.15)

so that

216 The definition 215 is used to define the fourthorder identity - фото 17(2.16)

The definition ( 2.15) is used to define the fourth-order identity tensors used in this book which are denoted by I or I.

2.4 Displacement and Velocity Vectors

Consider a continuous elastic medium that is being deformed from some homogeneous initial state as a result of loading. At some time t , a material point at xwill have moved from its initial location x¯ in the material. The motion of the medium can be described by the following transformation gand its inverse G

Properties for Design of Composite Structures - изображение 18(2.17)

The vector x¯ defines ‘material coordinates’, associated with the motion of the medium that, together with the function g, can be used to describe the spatial variation during deformation of any physical quantity with respect to its original configuration. The transformation ( 2.17) is assumed to be single-valued and possess continuous partial derivatives with respect to their arguments. It is also assumed that the inverse function Gexists locally, and this is always the case when the Jacobian J is such that

Properties for Design of Composite Structures - изображение 19(2.18)

The displacement of a material point x¯ is denoted by u(x¯,t) when using material coordinates, and is defined by

Properties for Design of Composite Structures - изображение 20(2.19)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Properties for Design of Composite Structures»

Представляем Вашему вниманию похожие книги на «Properties for Design of Composite Structures» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Properties for Design of Composite Structures»

Обсуждение, отзывы о книге «Properties for Design of Composite Structures» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x