Риман сделал и следующий шаг в разработке неевклидовых концепций и представил геометрии в искривленных пространствах с тремя и четырьмя измерениями и даже больше. Одно из важнейших понятий, разработанных Риманом, – это понятие кривизны , скорости искривления кривой или поверхности. Например, поверхность яйца быстрее всего закругляется у заостренного конца. Риман дал и точное математическое определение кривизны в пространстве с любым количеством измерений. При этом он скрепил узы между алгеброй и геометрией, то есть продолжил дело Декарта. В трудах Римана уравнениям с любым числом переменных нашлись геометрические соответствия – и новые понятия из области новых геометрий стали партнерами алгебраических уравнений.
Рис. 45
Высокое положение евклидовой геометрии – не единственная жертва открытий, которые распахнули перед геометрией в XIX веке совершенно новые горизонты. Представления Канта о пространстве долго не продержались. Вспомним, что Кант утверждал, что данные органов чувств организуются исключительно по шаблонам, которые задал Евклид, еще до того, как регистрируются в нашем сознании. Геометры XIX столетия быстро выработали у себя интуитивное понимание неевклидовых геометрий и научились исследовать мир с этой точки зрения. Оказалось, что евклидово восприятие пространства все-таки не интуитивно, ему учатся. Все эти поразительные открытия натолкнули великого французского математика Анри Пуанкаре (1854–1912) на вывод, что аксиомы геометрии – это «не синтетические интуитивные априорные догадки и не экспериментальные факты. Это договоренности (курсив мой. – М. Л. ). Какую именно договоренность из всех возможных мы выбираем, зависит от экспериментальных фактов, но это свободный выбор». Иначе говоря, Пуанкаре считал аксиомы и постулаты всего лишь «замаскированными определениями».
Представления Пуанкаре были вдохновлены не только неевклидовыми геометриями, о которых мы только что говорили, но и бурным ростом других новых геометрий, который к концу XIX века, похоже, совершенно вышел из-под контроля (Poincaré 1891). Скажем, в проективной геометрии (проекции получаются, например, если спроецировать на экран изображение на кинопленке) можно буквально менять местами роли точек и линий, так что теоремы о точках и линиях (в этом порядке) становятся теоремами о линиях и точках. В дифференциальной геометрии математики применяют дифференциальное исчисление для изучения локальных геометрических свойств различных математических пространств, например поверхности сферы или тора. По крайней мере, на первый взгляд все эти геометрии и им подобные казались порождением математического вдохновения и воображения, а не точными описаниями физического пространства. Ну и как прикажете в таких условиях отстаивать представление о Боге-математике? Ведь если «Бог всегда остается геометром ( пер. Л. Сумм )» (эту фразу приписывал Платону историк Плутарх), которая из множества геометрий соответствует божественным практикам?
Недостатки классической евклидовой геометрии становились все очевиднее, и это вынудило математиков всерьез задуматься об основах математики в целом и об отношениях математики и логики в частности. К этой важной теме мы вернемся в главе 7. Здесь же позвольте лишь отметить, что поколебалось представление о самоочевидности аксиом и постулатов как таковых. А следовательно, именно революция в геометрии, вероятно, оказала самое сильное влияние на представление о природе математики – невзирая на то, что в XIX веке был достигнут значительный прогресс и в алгебре, и в анализе.
О людях, пространстве и числах
Однако математики не могли подступиться к всеохватной теме оснований математики, пока не были решены некоторые «мелкие» вопросы, требовавшие немедленного вмешательства. Во-первых, разработка и публикация неевклидовых геометрий сама по себе не означала, что это были законные отпрыски математики. Над математикой довлел непреодолимый страх перед логической непоследовательностью – перед тем, что если довести эти геометрии до логического конца, это приведет к неразрешимым противоречиям. К 1870 годам итальянец Эудженио Бельтрами (1835–1900) и немец Феликс Клейн (1849–1925) показали, что неевклидовы геометрии последовательны в той же мере, что и евклидова. Однако это не решало более масштабный вопрос о прочности оснований евклидовой геометрии. Кроме того, вставал и важный вопрос о релевантности. Большинство математиков считали новые геометрии в лучшем случае забавными курьезами. Исторически сложилось так, что своим огромным авторитетом евклидова геометрия была обязана именно тому, что считалась описанием реального пространства, а неевклидовы, как поначалу казалось, вообще не имели отношения к физической реальности. Поэтому в глазах большинства математиков неевклидовы геометрии были не более чем бедными родственницами евклидовой. Анри Пуанкаре оказался немного гибче прочих, но даже он утверждал, что если бы люди попали в мир, где общепринята какая-нибудь неевклидова геометрия, – и тогда было бы «ясно, что мы не сочли бы более удобным перейти» с евклидовой геометрии на неевклидову. Поэтому назрели два вопроса: (1) можно ли воздвигнуть геометрию в частности и другие математические дисциплины в целом на прочном аксиоматическом логическом основании и (2) каковы отношения между математикой и физическим миром и есть ли они вообще?
Читать дальше
Конец ознакомительного отрывка
Купить книгу