Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Здесь есть возможность читать онлайн «Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Линия, пересеченная с другой линией, задаст плоскость или поверхность; если поверхность пересечется с линией, получится тело. Но если это тело пересечется с линией или эта плоскость с плоскостью, что тогда получится? Плоскостная плоскость? Это какой-то уродец, возможный даже в меньшей степени, чем химера [огнедышащее чудовище из греческой мифологии, помесь змея, льва и козла] либо кентавр [в греческой мифологии – существо с телом и ногами коня и торсом и головой человека]. Ведь длина, ширина и толщина полностью описывают пространство. Никакое воображение не способно представить себе четвертое локальное измерение помимо этих трех.

Опять же логика Валлиса понятна: нет никакого смысла даже воображать геометрию, которая не описывает реальное пространство.

В конце концов мнения начали меняться [108] Краткая история вопроса дана в Cajori 1926. . Впервые представления о том, что потенциальным четвертым измерением может оказаться время, появились у математиков XVIII века. В статье, которая так и называлась – « Dimension » ( «Измерение ») – опубликованной в 1754 году [109] Статья вошла в «Энциклопедию» Дидро. Цит. по Archibald 1914. , физик Жан Д’Аламбер (1717–1783) писал так.

Выше я указывал, что невозможно представить себе более трех измерений. Один талантливый человек, мой знакомый, полагает, что можно, однако, взирать на продолжительность как на четвертое измерение и что произведение времени на объем в некотором смысле четырехмерно. С этим представлением можно поспорить, однако мне представляется, что в нем помимо чистой новизны есть и здравое зерно.

Великий математик Жозеф Лагранж в 1797 году пошел еще на шаг дальше и сделал еще более смелое заявление (Lagrange 1797).

Поскольку положение точки в пространстве зависит от трех прямоугольных координат, эти координаты в задачах по механике понимаются как функции t [времени]. Таким образом, мы можем считать механику геометрией четырех измерений, а механический анализ – продолжением анализа геометрического.

Эти смелые идеи открыли дорогу расширению математики в области, которые раньше представлялись немыслимыми – в геометрии с любым количеством измерений, – и при этом вопрос о том, имеют ли эти геометрии какое бы то ни было отношение к физическому пространству, полностью игнорировался.

Может быть, Кант и заблуждался, когда полагал, что наше восприятие пространства следует исключительно евклидовым образцам, однако не приходится сомневаться, что мы в состоянии воспринимать естественно и интуитивно не более трех измерений. Мы можем относительно легко представить себе, как выглядел бы трехмерный мир в двумерной платоновской Вселенной теней, но выйти за пределы трех измерений способно лишь подлинно математическое воображение.

Некоторые революционные труды по разработке n-мерной геометрии – геометрии в произвольном числе измерений – принадлежат перу Германа Гюнтера Грассмана (1809–1877). Грассман, у которого было одиннадцать братьев и сестер и который и сам стал отцом одиннадцати сыновей и дочерей, был школьным учителем, не получившим университетского математического образования [110] Прекрасную биографию с описанием научной деятельности Грассмана (на немецком языке) можно найти в Petsche 2006. Краткое изложение его открытий можно найти в O’Connor and Robertson 2005. . При жизни он больше прославился трудами по лингвистике (по большей части изучением санскрита и готского), нежели достижениями в математике. Один его биограф писал: «Похоже, Грассману суждено, чтобы его время от времени открывали заново – всякий раз так, словно бы он был практически полностью забыт ». И все же именно Грассману принадлежит заслуга создания абстрактной науки о «пространствах », в которой привычная геометрия – всего лишь частный случай. Свои новаторские идеи (коренившиеся в отрасли математики под названием линейная алгебра ) Грассман опубликовал в 1844 году в книге, которую специалисты знают как « Ausdehnungslehre » ( «Теория расширений », полное название – «Теория линейных расширений. Новая отрасль математики »). В предисловии к этой книге Грассман писал: «Геометрию ни в коем случае нельзя считать… отраслью математики; ведь геометрия изучает нечто, уже имеющееся в природе, а именно пространство. Кроме того, я обнаружил, что должна существовать отрасль математики, которая исключительно абстрактным способом выводит законы, подобные законам геометрии ».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Представляем Вашему вниманию похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Обсуждение, отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x