Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Здесь есть возможность читать онлайн «Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: foreign_edu, Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Квантовая вселенная. Как устроено то, что мы не можем увидеть: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Квантовая вселенная. Как устроено то, что мы не можем увидеть», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это значит, что любые изменения a или b должны компенсироваться соответствующими изменениями f, g и h .

Уравнение (5) довольно уверенно утверждает, что белые карлики могут существовать. Дело в том, что нам удалось уравновесить уравнение гравитации-давления – уравнение (1). Это было не так-то просто: вполне могло оказаться, что уравнению не удовлетворяет ни одно сочетание M и R . Уравнение (5) также предсказывает, что величина RM ⅓должна быть постоянной. Иными словами, если посмотреть на небо и измерить радиус и массу белых карликов, мы должны обнаружить, что радиус, помноженный на квадратный корень массы, даст один и тот же результат для любого белого карлика. Это смелое предсказание.

Только что изложенный аргумент можно еще усилить, поскольку возможно с точностью вычислить значение λ , правда, для этого придется решить дифференциальное уравнение второго порядка с учетом плотности, а такая математика лежит далеко за пределами нашей книги. Помните, что λ – это чистое число: оно значит только «то, что значит», и мы можем вычислить его с привлечением математики чуть более высокого уровня. Тот факт, что здесь мы не стали этим заниматься, не должен затмевать наших достижений: мы доказали, что белые карлики могут существовать, и сумели сделать предсказание, связанное с их массой и радиусом. После вычисления λ (которое можно выполнить на домашнем компьютере) и введения значений для κ и G наше предсказание примет вид:

RM ⅓= (3,5 × 10 17кг ⅓ м) × ( Z / A ) 5/3,

что равняется 1,1 × 1017 кг1/3 м для ядер, состоящих из чистого гелия, углерода или кислорода (где Z / A = ½). Для железных ядер Z / A = 26/56, так что 1,1 сводится почти к 1,0. Мы пролистали справочную литературу и собрали данные о массах и радиусах 16 белых карликов, расположенных в Млечном Пути, ближайшей к нам галактике. Для каждой такой звезды мы вычислили значение RM ⅓, и результаты астрономических наблюдений показали, что оно приблизительно равно 0,9 × 10 17кг ⅓ м. Соответствие между наблюдениями и теоретическими выкладками просто поразительное: с помощью принципа Паули, принципа неопределенности Гейзенберга и закона притяжения Ньютона мы сумели предсказать зависимость между массой и радиусом для белых карликов.

Разумеется, в числах есть некая приблизительность (например, теория дает 1,1 или 1,0, а результат наблюдений – 0,9). Будь у нас настоящий научный анализ, мы бы начали сейчас говорить, насколько вероятно полное соответствие теории эксперименту, но для наших целей такой аналитический уровень не столь необходим, потому что соответствие и так удивительно неплохое. Просто фантастика, что мы сумели подсчитать все это с погрешностью примерно 10 %, и это убедительное доказательство нашего приличного понимания квантовой механики и звезд.

Профессиональные физики и астрономы на этом бы не остановились. Они бы решили проверить теоретическое понимание в мельчайших подробностях, для чего следовало бы улучшить наше описание в эпилоге. В частности, уточненный анализ принял бы во внимание, что температура звезды все же играет некоторую роль в ее структуре. Более того, электроны роятся вокруг положительно заряженных атомных ядер, а в наших расчетах мы полностью пренебрегли взаимодействиями между электронами и ядрами (а заодно и между самими электронами). Мы не стали их учитывать, потому что сразу же заявили: они внесут лишь незначительные коррективы в простое решение. Это заявление было подтверждено более подробными расчетами, и вот почему наше упрощенное решение так хорошо соотносится с данными.

Очевидно, что мы узнали уже очень много нового: установили, что давление электронов способно поддерживать существование белого карлика, и сумели с определенной точностью предсказать, как меняется радиус звезды с прибавлением или снижением ее массы. Заметьте, что, в отличие от «обычных» звезд, интенсивно жгущих горючее, белые карлики парадоксальным образом уменьшаются с прибавлением массы. Это потому, что добавленная масса идет на увеличение гравитации звезды, заставляя ее сжиматься. На первый взгляд отношения, выраженные в уравнении (5), предполагают, что необходимо добавить бесконечное количество массы, прежде чем звезда сожмется до нулевого размера. Однако этого не происходит. Важно, как мы говорили в самом начале эпилога, что мы постепенно переходим в то состояние, когда электроны размещаются очень плотно, и первостепенную важность обретает специальная теория относительности Эйнштейна, потому что скорость электронов приближается к скорости света. В результате мы должны отказаться в расчетах от законов движения Ньютона, заменив их законами Эйнштейна. В этом-то все и дело.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Квантовая вселенная. Как устроено то, что мы не можем увидеть»

Представляем Вашему вниманию похожие книги на «Квантовая вселенная. Как устроено то, что мы не можем увидеть» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Квантовая вселенная. Как устроено то, что мы не можем увидеть»

Обсуждение, отзывы о книге «Квантовая вселенная. Как устроено то, что мы не можем увидеть» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x