Разнообразные варианты моего бумажного глобуса делали на протяжении многих тысячелетий. Цицерон пишет, что древнегреческие астрономы изготавливали модели небесного свода, на которых были отмечены звезды, – это были далекие предки моей бумажной Вселенной. К сожалению, ни одна из таких греческих моделей не дошла до нас, но в одном из моих самых любимых оксфордских музеев, в Музее истории науки, можно увидеть другие, сохранившиеся модели. Там есть великолепный глобус высотой около полуметра, сделанный в начале XVI в. в Германии. Созвездия на нем оживают в виде фигур птиц, рыб, животных и людей, напечатанных на бумажных сегментах и наклеенных на сферу.
Хотя моя современная бумажная модель не может сравниться красотой с глобусом XVI в. из Музея истории науки, его икосаэдральная форма восходит к Платону и его вере в то, что небесная оболочка, заключающая в себе нашу Вселенную, может быть не сферой, а додекаэдром – еще одним Платоновым телом, подходящим для игральных костей. И значение этой математической кости для понимания формы Вселенной может быть не таким надуманным, как кажется на первый взгляд.
Удивительно, что мы вообще что-то знаем о тех областях пространства, в которые мы никогда не сможем попасть. Люди всех культур неизменно смотрели в небо и размышляли о том, что там может быть. Присутствие Солнца и Луны становится очевидным прежде всего. Но как же древним культурам удалось открыть что-то об этих небесных телах, если они были прикованы к поверхности планеты? Я вижу в этом одно из самых замечательных свойств математики – она позволяет нам делать выводы об устройстве Вселенной, не выходя из наших уютных обсерваторий.
Тригонометрия, математика углов и треугольников, была разработана не для того, чтобы мучить школьников, а для ориентации в ночном небе. Она стала нашим первым телескопом. Еще в III в. до н. э. Аристарх Самосский смог вычислить отношение размеров Солнца и Луны к радиусу Земли и определить соотношение их удалений от Земли, используя лишь математические модели треугольников.
Например, когда Луна находится точно в первой или последней четверти, угол между Землей, Луной и Солнцем приблизительно равен 90°. Тогда, измерив угол Φ между Луной, Землей и Солнцем, можно вычислить отношение расстояний между Землей и Луной и между Землей и Солнцем методами тригонометрии. Отношение этих расстояний точно равно косинусу угла Φ , то есть определяется чисто математическими методами.
Прямоугольный треугольник, образуемый Землей, Луной и Солнцем в первой и последней четвертях Луны
Однако точность измерений Аристарха была такова, что определенное им соотношение расстояний отличалось от точного результата в 20 раз. По его оценке, угол был равен 87°, в то время как его истинное значение составляет 89,853°, что почти равно прямому углу. Малое отклонение значения угла такой величины приводит к довольно большому изменению соотношения длин сторон треугольника. Для истинного определения размеров Солнечной системы потребовалось изобретение телескопа и более замысловатых математических методов.
Даже и не имея телескопов, астрономы видели, что Луна и Солнце – не единственные тела, перемещающиеся по небу. Древние культуры заметили в ночном небе несколько светящихся точек, которые вели себя совершенно иначе, чем множество прочих звезд. Они – Меркурий, Венера, Марс, Юпитер и Сатурн – казались блуждающими световыми маяками, которые нельзя отметить на моей бумажной сфере, поскольку на следующую ночь они окажутся уже в других точках. Одно из объяснений того важного значения, которое число семь имеет для разных культур, связано с тем, что число видимых планет с добавлением Солнца и Луны равно именно семи.
Не только планеты каждый день перемещаются относительно звезд, – оказывается, что и звезды движутся друг относительно друга. Так что небесный свод на моем столе – всего лишь моментальный снимок состояния ночного неба на некоторый определенный момент. Например, на моей сфере отмечено легко узнаваемое созвездие Большой Медведицы. Но звезды, образующие Большую Медведицу, – Мерак, Дубхе, Алькаид (Бенетнаш), Фекда, Алиот и Мицар – находятся в движении: 100 000 лет назад они образовывали бы на моем глобусе совсем другой рисунок, и еще через 100 000 лет они тоже будут выглядеть по-другому.
Читать дальше
Конец ознакомительного отрывка
Купить книгу