Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь Гёдель мог говорить о доказуемости или недоказуемости того или иного утверждения на основе аксиом как о некотором свойстве чисел. Положение, согласно которому «утверждение о существовании бесконечного количества простых чисел может быть доказано, исходя из аксиом теории чисел», преобразовалось в утверждение «кодовый номер утверждения о существовании бесконечного количества простых чисел делится на кодовые номера аксиом теории чисел», то есть в чисто математическое утверждение о свойствах чисел, которое может быть либо истинным, либо ложным.

Держитесь покрепче, пока мы будем преодолевать все логические изгибы и повороты доказательства Гёделя. Гёдель решил рассмотреть следующее утверждение S: «Это утверждение недоказуемо». Утверждению S присвоен некий кодовый номер. Но, если проанализировать содержание утверждения S, оно попросту сводится к утверждению о наличии или отсутствии делимости кодового номера утверждения S на кодовые номера аксиом. Предположим, что аксиоматическая система теории чисел, которую мы анализируем, не порождает противоречий, как надеялся Гильберт.

В кодировке Гёделя S становится всего лишь утверждением о свойствах чисел. Кодовый номер S либо делится на кодовые номера аксиом, либо не делится. Это утверждение должно быть либо истинным, либо ложным. Оно не может одновременно быть и истинным, и ложным, так как это противоречило бы нашему предположению об отсутствии противоречий в данной системе.

Предположим, что доказательство утверждения S на основе аксиом теории чисел существует. Из этого следует, что кодовый номер S делится на кодовые номера некоторых аксиом. Но доказуемое утверждение истинно. Однако, если проанализировать содержание утверждения S, мы увидим, что оно означает, что кодовый номер S не делится на номера аксиом. Противоречие. Но мы предположили, что математика не содержит противоречий. В отличие от парадокса из моей рождественской хлопушки из этой логической загадки должен существовать какой-то выход.

Чтобы выйти из этого тупика, следует понять, что наше исходное предположение было ложным: мы не можем доказать истинность утверждения S, исходя из аксиом теории чисел. Но именно это и утверждает S . То есть утверждение S истинно. Мы доказали, что предложенное Гёделем утверждение S – истинное утверждение, недоказуемое с использованием этих аксиом.

Это доказательство может напомнить вам, как мы доказали, что квадратный корень из 2 есть иррациональное число. Сначала предположим, что это не так. Это предположение приводит к противоречию. Значит, корень из двух все же должен быть иррациональным. Доказательство обоих результатов основано на том важном допущении, что аксиомы теории чисел не порождают противоречий. Одно из наиболее интересных следствий из доказательства Гёделя состоит в том, что математику нельзя спасти, введя в нее одно из таких недоказуемых утверждений в качестве аксиомы. Можно подумать, что, раз утверждение S истинно, но недоказуемо, почему бы не принять его за аксиому – и тогда, может быть, все истинные утверждения окажутся доказуемыми? Доказательство Гёделя демонстрирует, что, сколько бы новых аксиом мы ни вводили в систему, в ней всегда останутся недоказуемые истинные утверждения.

Если вы чувствуете легкое головокружение от того логического танца, в который увлек нас Гёдель, не волнуйтесь. Хотя я изучал эту теорему много раз, к концу доказательства у меня всегда несколько кружится голова – настолько поразительны его следствия. Гёдель представил математическое доказательство того, что в любой непротиворечивой аксиоматической системе теории чисел существуют истинные утверждения о свойствах чисел, справедливость которых невозможно доказать в рамках данной системы, – математическое доказательство ограниченности математики. Интересно отметить, что непознаваемо тут не само утверждение S . Собственно говоря, мы доказали его истинность. Дело в том, что для этого нам пришлось выйти за пределы данной конкретной аксиоматической системы математики, и тем самым мы продемонстрировали ее ограниченность. Именно это и продемонстрировал Гёдель – что истинность этого утверждения не может быть доказана в рамках данной системы.

Это уже достаточно обескураживающее открытие Гёделя, известное под названием первой теоремы Гёделя о неполноте, уничтожило надежду Гильберта на математическое доказательство отсутствия в математике противоречий. Гёдель доказал, что утверждение «Это утверждение недоказуемо» истинно в предположении о том, что математика не содержит противоречий. Если отсутствие противоречий можно доказать математически, то это обстоятельство можно использовать для доказательства в рамках такой математики, что утверждение «Это утверждение недоказуемо» истинно. Но при этом как раз и возникает противоречие, поскольку само это утверждение утверждает, что оно недоказуемо. Поэтому любое доказательство отсутствия в математике противоречий неизбежно приводит к противоречию. Мы снова вернулись к нашим рекурсивным утверждениям. Единственный выход из этой ситуации заключается в признании невозможности математического доказательства того, что математика лишена противоречий. В этом состоит вторая теорема Гёделя о неполноте. К ужасу Гильберта, она обнаружила «ignorabimus» в самом сердце математики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x