Отступление
Из основной теоремы арифметики вытекает любопытное следствие, касающееся простых чисел (вы можете найти его доказательство практически в любом учебнике, причем на первых страницах): если простое число p является делителем произведения двух или более чисел, оно также должно являться делителем одного из них. Например, поскольку
999 999 = 333 × 3003
кратно 11, то 11 должно быть делителем либо 333, либо 3003 (на деле – только последнего сомножителя: 3003 = 11 × 273). В случае составных чисел это правило работает не всегда: так, 60 = 6 × 10 делится на 4, несмотря на то что 4 не является делителем ни 6, ни 10.
Чтобы показать уникальность каждого разложения на множители, пойдем от обратного – предположим, что одно и то же число можно представить несколькими отличными друг от друга произведениями. Допустим, N – наименьшее из чисел, которые можно разложить на простые сомножители двумя разными способами. Скажем,
p 1 p 2… p r = N = q 1 q 2… q s
где все значения p iи q jсуть простые величины. Так как p 1очевидно кратно N , оно должно быть делителем одного из значений q j. Облегчим себе задачу и предположим, что это q 1. Тогда, поскольку q 1 – величина простая, у нас должно получиться q 1= p 1. Разделив все части уравнения на p 1, приходим к
что означает, что число
может быть разложено на множители двумя разными способами, а это противоречит нашему условию, что N есть наименьшее из таких чисел.◻
Отступление
Кстати, существуют такие системы счисления, где далеко не каждое число раскладывается на множители единственным способом. На Марсе, например, у каждого по две головы, поэтому марсиане понятия не имеют, что такое нечетные числа, пользуясь исключительно четными:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30…
В марсианской системе числа вроде 6 или 10 будут считаться простыми, потому что их нельзя разложить на меньшие четные числа. А отличить простые числа от составных (которые, кстати, чередуются в ряду с завидной регулярностью) не составляет никакого труда: если число делится на 4 без остатка – оно составное (потому что 4 k = 2 × 2 k ), если не делится – простое (6, 10, 14, 18 и т. д.), ведь его нельзя представить в виде двух меньших четных чисел.
Но давайте посмотрим на число 180:
6 × 30 = 180 = 10 × 18
Очевидно, что оно может быть разложено на множители двумя разными способами, а значит, ни о какой уникальности на Марсе и слыхом не слыхивали.
В интервале от 1 до 100 насчитывается 25 простых чисел, от 101 до 200 – 21, от 201 до 300 – 16. И тенденция эта сохраняется: чем дальше мы продвигается, тем реже встречаются простые величины (без всякой, впрочем, системы: в промежутке от 301 до 400 их снова 16, а в промежутке от 401 до 500 – 17) – а от 1 000 000 до 1 000 100 мы их найдем всего лишь 6. Объяснение этому вполне очевидно: чем больше число, тем больше потенциальных делителей у него будет.
Давайте попробуем доказать, что есть такие сотни чисел, в которых простых чисел не будет вовсе (и не только сотни – тысячи, миллионы, сколько угодно). Для этого будет достаточно подобрать 99 последовательно идущих друг за другом составных чисел:
100! + 2, 100! + 3, 100! + 4…., 100! + 100
Так как 100! = 100 × 99 × 98 ×… × 3 × 2 × 1, его можно разделить на все числа от 2 до 100. Возьмем теперь 100! + 53. Так как 53 – делитель 100! оно должно являться делителем и 100! + 53. Та же логика подсказывает, что при 2 ≤ k ≤ 100 100! + k должно быть кратным k , а следовательно, составным.
Отступление
Обратите внимание, что мы пропустили 100! + 1. Впрочем, ничто не мешает нам взять и его. На этот счет существует очень интересная теорема – теорема Вильсона , которая утверждает, что число n является простым тогда и только тогда, когда ( n – 1)! + 1 делится на n без остатка. Применим ее к нескольким малым величинам: 1! + 1 = 2, что кратно 2; 2! + 1 = 3, что кратно 3; 3! + 1 = 7, что не кратно 4; 4! + 1 = 25, что кратно 5; 5! + 1 = 121, что не кратно 6; 6! + 1 = 721, что кратно 7; и т. д. Следовательно, поскольку число 101 – простое, согласно теореме Вильсона, 100! + 1 является кратным 101 и потому составным. Значит, промежуток от 100! до 100! + 100 содержит в себе непрерывную последовательность, состоящую из 101 составного числа.
Читать дальше
Конец ознакомительного отрывка
Купить книгу