Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так, в примере с первыми n нечетными числами наша задача – показать, что при любом значении n ≥ 1

1 + 3 + 5 +… + (2 n – 1) = n ²

Мы видим, что сумма самого первого нечетного числа – 1 – и в самом деле составляет 1², то есть для n = 1 наше предположение абсолютно верно. Дальше нам следует обратить внимание на то, что, если сумма первых k нечетных чисел составляет k ², а именно

1 + 3 + 5 +… + (2 k – 1) = k ²

при добавлении следующего нечетного числа (2 k + 1) у нас получится

1 + 3 + 5 +… + (2 k – 1) + (2 k + 1) = k ² + (2 k + 1) = ( k + 1)²

Другими словами, если сумма первых k нечетных чисел равна k ², то сумма первых k + 1 нечетных чисел обязательно будет равна ( k + 1)². Значит, теорема, истинная в отношении n = 1, будет столь же истинной в отношении любого значения n .◻

Индукция – инструмент действенный. Эта книга начиналась с проблемы определения суммы первых n чисел. Разными путями мы пришли к тому, что

Это предположение безусловно правдиво при n 1 потому что 1 122 - фото 257

Это предположение, безусловно, правдиво при n = 1 (потому что 1 = 1(2)/2). Предположим, что оно правдиво и для числа k :

Тогда прибавив к этой сумме k 1 получим В этой формуле k 1 - фото 258

Тогда, прибавив к этой сумме ( k + 1), получим

В этой формуле k 1 использовано вместо n Значит если она верна для n k - фото 259

В этой формуле k + 1 использовано вместо n . Значит, если она верна для n = k (где под k может скрываться любое положительное число), она будет так же верна и для n = k + 1. Равно как и для любого положительного значения n .◻

В этой главе (да и в книге вообще) будет еще много примеров использования индуктивного метода. А пока для закрепления материала вот вам песня, написанная «музыкантами от математики» Дэйном Кэмпом и Ларри Лессером на мотив знаменитой «Blowin' in the Wind» Боба Дилана.

Откуда нам знать, что теорема верна
С любым значением n ?
Миллиард вариантов – все не перебрать,
Никак не свести в один.
Но как же иначе найти нам ответ,
Чтоб не свалиться в сплин?

Индукция, друг мой, – вот наш господин.
Индукция – наш господин.

Сначала находим, с чего бы начать,
К чему наш закон примени́м,
Потом переносим все это на k ,
Потом – и на k + 1.
Ну а дальше легко – ведь эффект домино
Нисколечко не отмени́м.

Индукция, друг мой, – вот наш господин.
Индукция – наш господин!

n раз повторю, да хоть n + 1:
Индукция – наш господин!

Отступление

В главе 5 мы рассмотрели несколько задач, основанных на числах последовательности Фибоначчи. Попробуем доказать парочку из них, используя метод индукции.

Теорема:Для n ≥ 1

F 1+ F 2+… + F n = F n +2 – 1

Доказательство (методом индукции):Если n = 1, то F 1= F 3 – 1, что соответствует 1 = 2 – 1, что безусловно истинно. Применим это к n = k , то есть

F 1+ F 2+… + F k = F k +2 – 1

Добавив к обеим частям число Фибоначчи F k +1, получим

F 1+ F 2+… + F k + F k +1= F k +1+ F k +2 – 1 = F k +3 – 1

что и требовалось доказать.

Столь же простым будет доказательство для суммы квадратов чисел Фибоначчи.

Теорема:Для n ≥ 1

F 1² + F 2² +… + F n² = F nF n+1

Доказательство (методом индукции):Если n = 1, то F 1² = F 1 F 2, что верно потому, что F 2= F 1= 1. Применив это к n = k , получаем

F 1² + F 2² +… + F k² = F kF k+1

А теперь добавим к обеим сторонам F ² k+1:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x