Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все эти вычисления показывают, что g 10и g 20настолько близки к целым числам, что практически ими являются. Что именно здесь происходит? Посмотрите на последовательность Люка́

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521…

названную в честь французского математика Эдуарда Люка (1842–1891) – первооткрывателя многих удивительных свойств этих чисел, а заодно и чисел Фибоначчи, включая формулу с наибольшим общим делителем, о которой мы не так давно говорили. Кстати, именно Люка впервые назвал набор чисел 1, 1, 2, 3, 5, 8… последовательностью Фибоначчи. Последовательность же Люка соответствует его собственной (несколько упрощенной) версии формулы Бине –

Другими словами при n 1 L nесть целая ближайшая к g n величина что - фото 230

Другими словами, при n ≥ 1 L nесть целая ближайшая к g n величина (что согласуется с тем, что мы уже видели: g 10≈ 123 = L 10). А вот как связаны между собой последовательности Фибоначчи и Люка:

Не заметить здесь закономерность почти невозможно Например сложение соседей - фото 231

Не заметить здесь закономерность почти невозможно. Например, сложение «соседей» числа Фибоначчи дает соответствующее ему по позиции число последовательности Люка:

F n –1+ F n +1= L n

А если мы сложим «соседей» числа из последовательности Люка, получим результат, который будет ровно в 5 раз больше соответствующего ему по позиции числа Фибоначчи:

L n –1+ L n –1= 5 F n

Если перемножить между собой соответствующие друг другу числа двух последовательностей, мы получим еще одно число последовательности Фибоначчи!

F nL n = F 2n
Отступление

Последнее может быть доказано с помощью алгебры и формул Бине (а именно ( x – y )( x + y ) = x ² – y ²). Исходя из h = (1 – √ 5 )/2, представим формулы Бине для чисел Фибоначчи и Люка в виде

И когда мы их перемножаем получается Откуда пришло название золотое - фото 232

И когда мы их перемножаем, получается

Откуда пришло название золотое сечение Из золотого прямоугольника в котором - фото 233

Откуда пришло название «золотое сечение»? Из золотого прямоугольника, в котором соотношение длинной и короткой сторон составляет g = 1,61803…

Если обозначить короткую сторону единицей и убрать из прямоугольника квадрат со - фото 234

Если обозначить короткую сторону единицей и убрать из прямоугольника квадрат со сторонами 1 на 1, у нас останется еще один прямоугольник со сторонами 1 и ( g – 1), соотношение которых составит

То есть пропорции маленького прямоугольника будут такими же как и большого - фото 235

То есть пропорции маленького прямоугольника будут такими же, как и большого. Кстати, g – единственное в своем роде число со столь уникальными свойствами, потому что уравнение картинка 236подразумевает, что g ² – g – 1 = 0. А формула корней квадратного уравнения приводит нас только к одному положительному числу, удовлетворяющему этому условию, и число это – (1 + √ 5 )/2 = g .

Благодаря этому своему свойству золотой прямоугольник считается эстетически образцовым, а потому часто используется в разных областях искусства, будь то живопись, фотография или архитектура. Например, Лука Пачоли [14] – друг и соратник Леонардо да Винчи называл его «божественной пропорцией».

Золотое сечение лежит в основе стольких удивительных математических явлений - фото 237

Золотое сечение лежит в основе стольких удивительных математических явлений, что подчас очень сложно удержаться от соблазна увидеть его даже там, где его нет и никогда не было. Например, в романе «Код да Винчи» Дэн Браун пишет, будто число 1,618 встречается везде и всегда, и подтверждение тому – строение человеческого тела, Браун утверждает, что отношение нашего роста к высоте, на которой расположен пупок, – 1,618. Я не проводил измерений, но в статье Джорджа Марковски «Выдумки о золотом сечении», опубликованной в журнале College Mathematics Journal , говорится, что это не соответствует реальности. Тем не менее каждый раз, когда где-то встречается число, хоть сколько-то близкое к 1,6, кто-нибудь вспоминает о золотом сечении.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x