Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
что показано на следующем графике расположенном на комплексной плоскости И - фото 532

что показано на следующем графике, расположенном на комплексной плоскости.

И хотя формула конечного геометрического ряда верна для любого значения x 1 - фото 533

И хотя формула конечного геометрического ряда верна для любого значения x ≠ 1, (бесконечный) геометрический ряд требует, чтобы | x | был меньше 1. Например, при x = 2 конечный геометрический ряд покажет нам (как мы уже выяснили в шестой главе), что

а бесконечный что что выглядит нелепо хотя это впечатление может быть и - фото 534

а бесконечный – что

что выглядит нелепо хотя это впечатление может быть и обманчивым в - фото 535

что выглядит нелепо (хотя это впечатление может быть и обманчивым: в предпоследнем разделе этой главы мы увидим вполне правдоподобное объяснение такого результата).

Отступление

Число положительных целых величин бесконечно:

1, 2, 3, 4, 5…

Равно как бесконечно и количество положительных четных целых величин:

2, 4, 6, 8, 10…

Считается, что первое множество (или число элементов, или степень бесконечности) приблизительно равно первому. В пользу этого утверждения говорит тот факт, что положительные целые и положительные четные целые можно объединить в пары, вот так:

Множество способное к объединению в пары называется счетным Степень - фото 536

Множество, способное к объединению в пары, называется счетным . Степень бесконечности у него, как правило, невелика. Любое множество, величины которого можно перечислить , является счетным, так как первый его элемент есть пара к 1, второй – к 2 и т. д. Множество всех целых величин

… –3, –2, –1, 0, 1, 2, 3…

перечислить от меньшего значения к большему не получится просто потому, что нет никакого «стартового» наименьшего значения. Зато получится перечислить их вот так:

0, 1, –1, 2, –2, 3, –3…

Следовательно, множество всех целых является счетным, а число его элементов равно числу элементов в множестве положительных целых.

А что насчет множества положительных рациональных величин? Напомню: рациональными называются числа, имеющие форму m / n , где и m , и n суть положительные целые. Хотите – верьте, хотите – нет, но и это множество будет счетным. Перечислить его элементы можно следующим образом:

то есть мы берем дроби в соответствии с суммой их числителей и знаменателей - фото 537

то есть мы берем дроби в соответствии с суммой их числителей и знаменателей. Так как любая рациональная величина неизбежно появляется в списке, их множество будет счетным.

Отступление

А существуют ли вообще такие бесконечные множества, которые не являются счетными? Немецкий математик Георг Кантор (1845–1918) доказал, что все действительные величины, даже только те из них, что ограничены диапазоном от 0 до 1, образуют несчетное множество. Можно, конечно, попробовать перечислить их следующим образом:

0,1, 0,2…., 0,9, 0,01, 0,02…., 0,99, 0,001, 0,002…., 0,999…

и т. д. Но так мы никогда не выйдем за пределы величин с конечным количеством знаков. Число 1/3 = 0,333…, например, в нашем списке так и не встретится. Но, может, есть какой-нибудь другой, более эффективный способ перечисления? Кантор доказал, что его нет. Он пошел от обратного – предположил, что множество действительных величин является счетным. Он взял конкретный пример и начал с

Доказать что этот список не будет полным можно придумав такое - фото 538

Доказать, что этот список не будет полным, можно, «придумав» такое действительное число, которое никогда в нем не появится. Можно взять, скажем, величину 0, r 1 r 2 r 3 r 4…, где r 1есть целое в интервале от 0 до 9, которое отличается от первого числа только первой цифрой (в нашем примере r 1≠ 3). Так же обстоит и с r 2: оно отличается от второго числа второй цифрой (у нас r 2≠ 7). И так далее. Таким образом у нас может получиться, скажем, 0,2674… – число, которое никогда не появится в списке, даже на миллионной позиции, потому что будет отличаться от нее миллионной цифрой. А значит, какой бы список вы ни создавали, всегда будут такие величины, которые в нем не появятся, следовательно, множество действительных чисел является несчетным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x