Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кстати, количества, выражаемые как ∞ – ∞ (бесконечность минус бесконечность) или 1/0 являются неопределенными. Конечно, очень велико искушение заявить, что 1/0 = ∞, потому что при делении единицы на все меньшую и меньшую положительную величину частное будет расти. Но ведь если делить 1 на все меньшие и меньшие по абсолютной величине отрицательные числа, то частное будет представать все большим и большим по абсолютной величине отрицательным числом.

Важность бесконечной суммы: геометрические ряды

Начнем, пожалуй, с утверждения, принимаемого всеми математиками и кажущегося неправильным большинству непосвященных:

0,99999… = 1

То, что две эти величины очень близки друг к другу, не вызывает сомнений практически ни у кого. Но считать их одним и тем же числом?.. Несколько чересчур, правда? Неправда. Позвольте мне попробовать убедить вас в обратном. Поверьте, доказательств у меня так много, что хотя бы одно из них обязательно покажется вам правдоподобным.

Самое, пожалуй, простое исходит из утверждения, что

Магия математики Как найти x и зачем это нужно - изображение 512

Умножаем обе стороны на 3 и получаем

Магия математики Как найти x и зачем это нужно - изображение 513

Другое доказательство основано на методе, который мы использовали в главе 6 для периодических десятичных дробей. Обозначим бесконечную последовательность знаков после запятой переменной w , вот так:

w = 0,99999…

Умножим обе части на 10:

10 w = 9,99999…

Вычтем первое уравнение из второго

9 w = 9,00000…

и получим w = 1.

А вот доказательство, для которого алгебра вообще не нужна. Надеюсь, вы согласны с тем, что два числа могут считаться разными, если между ними расположено третье число, не равное ни первому, ни второму (например, их среднее арифметическое)? Пойдем от обратного: предположим, что 0,99999… и 1 суть разные величины. Какое же тогда число будет между ними? А если такого числа нет, значит, мы не можем утверждать, что они разные.

Два числа или две бесконечные суммы считаются равными в том случае, если они сколь угодно близки друг к другу, то есть разница между ними меньше любой положительной величины, будь то 0,1 или 0,0000001, или 1, деленное на триллион. Разница между 1 и 0,99999… – наглядный тому пример, и именно это дает математикам право утверждать, что 1 и 0,99999… суть одно и то же число.

Следуя той же логике, мы можем оценить бесконечную сумму следующего ряда:

А еще мы можем найти ей физическое соответствие Представьте что вы стоите в - фото 514

А еще мы можем найти ей физическое соответствие. Представьте, что вы стоите в двух метрах от кирпичной стены. Вы делаете шаг вперед – ровно на метр. Следующий шаг будет вполовину короче – полметра. Потом четверть метра, одна восьмая метра и так далее. С каждым шагом расстояние между вами и стеной сокращается ровно вполовину. Если проигнорировать физические ограничения на длину каждого следующего шага (в том числе и длину ваших ступней), то рано или поздно вы подберетесь вплотную к стене. Всего же вы пройдете ровно 2 метра.

То же можно представить и геометрически. Начнем с прямоугольника с длинами сторон 1 и 2 и площадью 2. Разделим его пополам, потом еще раз и еще – и так до бесконечности. Площадь первого сектора будет равна 1, второго – 1/2, третьего – 1/4 и так далее. Даже когда мы будем делить на n , стремящееся к бесконечности, мы не выйдем за пределы начального прямоугольника, а площади всех его секторов в сумме будут по-прежнему равны 2.

Алгебра позволяет нам подойти к решению задачи с точки зрения частичных - фото 515

Алгебра позволяет нам подойти к решению задачи с точки зрения частичных , промежуточных сумм:

Эта закономерность подсказывает нам что при n 0 Доказать это можно либо с - фото 516

Эта закономерность подсказывает нам, что при n ≥ 0

Доказать это можно либо с помощью метода индукции см главу 6 либо как - фото 517

Доказать это можно либо с помощью метода индукции (см. главу 6), либо как частный случай формулы конечного геометрического ряда.

Теорема (конечный геометрический ряд):При x ≠ 1 и n ≥ 0

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x