Линн Фостер - Нанотехнологии. Наука, инновации и возможности

Здесь есть возможность читать онлайн «Линн Фостер - Нанотехнологии. Наука, инновации и возможности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2008, ISBN: 2008, Издательство: Техносфера, Жанр: foreign_edu, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нанотехнологии. Наука, инновации и возможности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нанотехнологии. Наука, инновации и возможности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы.
Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений. Перевод: Арсен Хачоян

Нанотехнологии. Наука, инновации и возможности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нанотехнологии. Наука, инновации и возможности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим проблему тепловыделения в микрокомпьютерах более подробно. Предположим, что мы пытаемся создать аналог привычной схемы совпадения и т. п. в обратимом варианте с использованием отдельных атомов или электронов. Из общих законов физики известно, что количество энергии, затрачиваемое на одно «срабатывание» такой схемы (одно принятие решений, один переход), имеет порядок кТ. А осознаете ли вы, что принятие одного решения в современных компьютерах требует затрат, пропорциональных примерно 1010 кТ энергии? Чудовищная разница в десять порядков возникает из-за огромных размеров наших вычислительных устройств и огромного количества используемых в процессе электронов! Правильное проектирование вычислительных устройств таит в себе почти неисчерпаемые возможности их совершенствования за счет снижения размеров. Эта проблема не интересовала Беннета, исследовавшего работу вычислительных устройств безотносительно к задачам тепловыделения. Позднее я тоже анализировал работу ЭВМ в рамках его модели и получил очень похожие результаты, но с некоторыми модификациями и уточнениями, о которых расскажу ниже.

Дело в том, что перенос электронов при некоторых (достаточно идеализированных) условиях может осуществляться в так называемом баллистическом режиме, когда протекание тока в сети вообще происходит без рассеяния и потери энергии. Процесс переноса небольших количеств электронов при этом напоминает «выстрел», когда вы точно направляете электроны так, что они проскакивают проводник без рассеяния. Щелк! Процесс завершен!

Поговорим о тепловых потерях при вычислительных операциях. Существует строгая связь между энергией электронов и их скоростью, то есть любой энергии кТ (я хочу особо подчеркнуть, что эта энергия не обязательно должна иметь только термический характер) соответствует некоторая предельная скорость v движения электронов в веществе и компьютере. В идеально сконструированных вычислительных устройствах электроны вообще не будут терять энергию при движении, а будут совершенно точно перескакивать из одних заданных положений в другие. После завершения вычислений, то перехода электрона из одного конца цепочки на другой, пользователь «получает» электрон с той же энергией, готовый к дальнейшим вычислительным операциям. Возможно, когда-нибудь нам удастся даже как-то аккумулировать, хранить или преобразовывать энергию таких электронов, используя ее для дальнейших операций и т. п. Вычисления без затрат энергии! Никаких потерь! Мне хочется напомнить только, что я говорю об абстрактной вычислительной системе, которую можно сравнить с идеальным тепловым двигателем, работающим по циклу Карно. Какие-то потери на «трение» в любой такой машине неизбежны, но наша цель состоит в их уменьшении и устранении.

Почему возникают потери при движении электронов? Обычно потери связаны с несовершенством кристаллической решетки, что известно каждому, кто хоть немного знаком с теорией металлов. В решетке всегда присутствуют дефекты, нарушающие взаимодействия и заставляющие электроны рассеиваться, «отскакивать» назад, создавать новые дефекты и т. д. Электроны перестают двигаться по «правильным», прямым траекториям, отклоняются, блуждают в решетке и т. д., но, приложив внешнее электрическое поле, вы можете заставить их снова и снова двигаться в заданном направлении. Собственно говоря, речь идет о простом электрическом сопротивлении, то есть о том, что соединения в компьютерах построены из реальных материалов, а не из идеальных проводников.

Ситуацию можно количественно описать введением некоторой вероятности рассеяния на пути электронов, то есть вероятности того, что электрон просто «отразится» на дефекте и начнет двигаться в обратном направлении. Предположим для простоты, например, что эта вероятность равна одной сотой на отдельном узле решетки, а мой вычислительный процесс требует прохождения именно сотни узлов. Пусть испускаемые в исходной точке электроны имеют скорость v, соответствующую энергии кТ. Вы можете пересчитать потери на рассеяния в виде изменений свободной энергии, однако принципиальным является то, что потери энтропии при рассеянии действительно являются необратимыми. Более того, я особо хочу подчеркнуть, что эти потери связаны с рассеянием, а не с самим процессом вычислений! (Фейнман выписывает эти слова на доске и тщательно подчеркивает их.) Чем лучше сконструирован компьютер, тем меньше операций вы затрачиваете на вычисление и, следовательно, тем меньше потери энергии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нанотехнологии. Наука, инновации и возможности»

Представляем Вашему вниманию похожие книги на «Нанотехнологии. Наука, инновации и возможности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Линн Грэхем - Наука обольщения
Линн Грэхем
Отзывы о книге «Нанотехнологии. Наука, инновации и возможности»

Обсуждение, отзывы о книге «Нанотехнологии. Наука, инновации и возможности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x