Если сигналы в каналах А и В различаются, то общая картина прохождения сигналов по цепочке А, В, С вообще не изменяется. Если же оба сигнала соответствуют 1, то они проходят А и В, но в С (независимо от вида) сигнал меняется на обратный и переходит в NOT C, так что я могу назвать это устройство вентилем типа «контроль, контроль, NOT».
Полученная схема является полностью обратимой (как в электротехническом, так и в общем смысле), так что даже если поменять входы и выходы местами, то вся схема (или состояния изображающего ее атома!) будут выглядеть и вести себя обратимо. При этом, как показал Тоффоли, такая схема вполне способна осуществлять логические операции.
Каким образом нам следует теперь определить некую вычислительную операцию? Мы можем утверждать, что изобретен метод, позволяющий вводить между каждой тройкой атомов (из полного набора, содержащего N атомов) некое взаимодействие. Это взаимодействие дает нам возможность изменять состояние атомов (то есть сочетание чисел 0 и 1) и переводить их в другое состояние (с другим сочетанием чисел 0 и 1). С математической точки зрения, это эквивалентно использованию некоторого типа матриц. Обозначим такую матрицу буквой M и попробуем определить ее общие свойства. Матрица M обладает свойством переводить любую комбинацию восьми цифр (соответствующую определенному набору состояний трех атомов) в другую комбинацию (соответствующую другому набору состояний). Кроме того, квадрат этой матрицы равен единице, то есть она относится к классу так называемых унитарных матриц. Теперь мы можем определить вычисление в рассматриваемых системах более точно, так как любую вычислительную операцию можно записать в виде цепочки матриц типа M. Каждая цепочка вычислений может содержать миллионы таких матриц, но действия каждой из них в данный момент будут относиться лишь к заданной тройке атомов.
Я должен подчеркнуть, что в приведенном выше примере со схемой совпадения AND и связанных с ней рассуждениях неявно подразумевалось, что после каждой операции выходные каналы (или, вообще говоря, атомы) должны как-то обновляться, то есть заменяться новыми. В случае с матрицами все выглядит гораздо проще, так как после воздействия матрицы в том же регистре остаются все те же атомы, но теперь их состояние соответствует результату вычислительного процесса! Имея систему из N атомов, я могу производить с ней вычисления, то есть множество раз менять и перетасовывать их состояния (но только по три в каждой операции!), получая в конце результат в виде изменения состояний системы этих N атомов.
20.11. Электрон как вычислительная машина
Матрицу взаимодействия между атомами можно выписать без особых сложностей. Другими словами, вы действительно можете придумать некий сложный вид физического взаимодействия между атомами, приводящий к выполнению какой-то вычислительной операции. Сложность состоит скорее в том, каким образом можно выразить ответ в приемлемой форме, то есть перевести последовательность преобразования состояний троек атомов в некий разумный ряд чисел. У меня есть очень простая идея на этот счет, и я сейчас ее изложу. ( Фейнман рисует на доске цепочку, ряд маленьких кружков, а затем, в ходе рассказа, часто указывает на некоторые из них.)
Поговорим о возможностях использования электронов. Представьте, что нарисованная мною связная последовательность кружков означает набор узлов или мест возможного расположения электронов, например, просто цепочку атомов. Если в одном из этих узлов находится электрон, то по законам классической механики он имеет возможность перескочить в какой-либо другой узел. В квантовой механике ситуация иная. Вы можете говорить лишь об определенном значении амплитуды волновой функции и т. п. Эти рассуждения заставляют вас обратиться к решениям в виде комплексных чисел и других весьма занятных приемов квантовой механики, но суть дела от этого не меняется, так как все расчеты относятся к тому же процессу возможного движения электрона вдоль цепочки. В квантовой механике вы просто пользуетесь другими терминами и говорите о «расплывании» функции Шрёдингера, при котором заданные значения амплитуды в определенной точке могут меняться во времени. Это означает, что электрон может смещаться вдоль цепочки, перескакивая из точки в точки, возвращаясь, доходя до ее концов и т. д. В принципе, вы можете вычислить вероятности, соответствующие любым маршрутам движения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу