Линн Фостер - Нанотехнологии. Наука, инновации и возможности

Здесь есть возможность читать онлайн «Линн Фостер - Нанотехнологии. Наука, инновации и возможности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2008, ISBN: 2008, Издательство: Техносфера, Жанр: foreign_edu, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нанотехнологии. Наука, инновации и возможности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нанотехнологии. Наука, инновации и возможности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы.
Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений. Перевод: Арсен Хачоян

Нанотехнологии. Наука, инновации и возможности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нанотехнологии. Наука, инновации и возможности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я думаю, всем понятно, что цепочка атомов изображает проводник, и реальный электрический ток соответствует именно таким «прыжкам» электронов вдоль узлов. Именно это позволяет мне предложить следующую схему вычислительного процесса, в которой описанная выше атомарная схема вычислений легко переносится на электроны. Действительно, ничто не мешает нам на практике ввести энергетический барьер (соответствующий нулевому значению амплитуды вероятности), не позволяющий электрону просто переходить из одного узла в соседний, а требующий для перехода некоторого заданного механизма взаимодействия с атомами (например, с тройкой атомов, означающей некоторый разряд записи). Таким образом, мы можем связать процесс движения электрона вдоль цепочки атомов с их состоянием, которое, как я говорил выше, может быть просто увязано с осуществлением вычислительного процесса. ( Отвечая на вопрос одного из слушателей, Фейнман выписывает на доске типичный член гамильтониана, используя матрицу атомного преобразования Mмежду операторами возникновения и исчезновения электронов в соседних узлах решетки.)

Таким образом, моя идея сводится к тому, чтобы электрон мог осуществлять перескок из одного узла в другой только тогда, когда это будет разрешено состоянием атомной цепочки, определяемой произведением матриц M. Иными словами, если электрон проходит от одного конца цепочки до другого, то мы можем быть уверены, что в атомарной системе произошли все изменения, определяемые матрицами M1, M2, M3, M4, M5 и т. д.

Разумеется, вы возразите, что все сказанное неверно, так как электроны ведут себя совсем по-другому! В каждый момент для них существует вероятность двигаться в определенном направлении, возвращаться на прежнее место и т. д. Например, переход из одного узла в другой означает операцию M2, а возращение – повторение операции M2. Вам кажется, что это нарушает логику рассуждений? Совсем не так! Напомню, что операция M2 является обратимой, поэтому, осуществляя ее дважды, вы фактически просто возвращаетесь в предыдущее состояние. Я бы сравнил последовательные действия операторов с движением обычной молнии-застежки, которую можно двигать взад-вперед, и если вам кажется, что она сработала неверно, вы можете просто вернуть застежку в какое-то положение, а затем застегнуть ее правильно. В любом случае исправная молния-застежка должна точно соединять два заданных конца цепочки, а если она не доведена до конца, то это ничего не означает, так как всегда можно завершить операцию.

Таким образом, если электрон дошел до конца цепочки атомов, можно быть уверенным, что все перестановки атомов (вычислительные действия, следуя логике рассуждений) завершены правильно. Вы просто должны дождаться конца вычислительных процедур, выписать полученный результат и забыть о всех технических подробностях. Это легко сделать в описываемых системах, приложив незначительные электрические напряжения на концах цепочки.

Идея является не только вполне здравой, но и позволяет по-новому взглянуть на проблему ограниченности вычислительных способностей компьютеров. Конечно, описанный выше компьютер трудно создать на практике, но зато нам удалось определить практически все принципы его действия. Мы даже можем вполне серьезно проанализировать его некоторые параметры и особенности работы, включая скорость, количество требуемых элементов и особенно проблему тепловыделения, о чем пойдет речь дальше.

20.12. Тепловыделение в квантовых компьютерах

Все знают, что работающий компьютер выделяет много энергии, о чем постоянно беспокоятся проектировщики и пользователи. Уменьшение размеров вычислительных устройств лишь усугубляет проблемы, так как выделение тепла происходит в более малых и замкнутых объемах пространства, охлаждение которых представляет собой сложную техническую задачу. Можно просто сказать, что все современные ЭВМ плохо спроектированы. Беннет показал (как я уже упоминал выше), что вычислительный процесс может быть сделан полностью обратимым, то есть при использовании обратимых вентилей и схем совпадения мы могли бы снизить тепловые потери до ничтожного уровня. Строго говоря, это потребовало бы очень медленной работы и даже снижения скорости движения электронов по используемым схемам. Стоит отметить, что создание идеальных обратимых логических схем несколько напоминает ситуацию с обратимым циклом Карно, идеальным (но исключительно медленным) термодинамическим циклом со 100 %-ным коэффициентом полезного действия! Конечно, идею замедления скорости работы ЭВМ не стоит даже рассматривать всерьез, но можно придумать правильно сконструированную вычислительную машину, в которой движение электронов не связано с потерей энергии, за исключением столкновений с дефектами кристаллической решетки, о чем я сейчас расскажу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нанотехнологии. Наука, инновации и возможности»

Представляем Вашему вниманию похожие книги на «Нанотехнологии. Наука, инновации и возможности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Линн Грэхем - Наука обольщения
Линн Грэхем
Отзывы о книге «Нанотехнологии. Наука, инновации и возможности»

Обсуждение, отзывы о книге «Нанотехнологии. Наука, инновации и возможности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x