Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Здесь есть возможность читать онлайн «Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Центрполиграф», Жанр: foreign_edu, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия чисел. Математическая мысль от Пифагора до наших дней: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия чисел. Математическая мысль от Пифагора до наших дней»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия чисел. Математическая мысль от Пифагора до наших дней», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поскольку математика предала его, Беркли искал другие средства подтверждения постулата существования. Прежде всего он убедил себя, что опроверг существование самой проблемы. Из этого, как ему казалось, следовало, что все есть дух. Приняв данный постулат, доказать остальное становилось относительно легко. И хотя это не было математически доказано, ведь сам Беркли считал, что это невозможно, он следовал строгим методам математики. Аргументы в пользу необходимости и достаточности каждого шага выглядели вполне профессионально и логически строго.

В эссе «К новой теории восприятия» (1709), например, Беркли предпринял попытку доказать, что «видимое пространство» – понятие идеалистическое, существующее исключительно в мозгу воспринимающего человека. Делая великодушную уступку Пифагору, Беркли присвоил числу статус реальности. «Трактат о принципах человеческого знания» (1710) выдвинул дальнейшую аргументацию в пользу чистого идеализма, отрицал существование материи и доказывал, что разум есть единственно возможная «субстанция». Все это так же убедительно, как и книга Евклида: сам выдал гипотезу и сделал логические выводы, нравится вам или нет. Результатом стало знаменитое берклианское «Всё», изречение «Быть – значит быть воспринимаемым» (Esse est percipi).

Если бы Беркли был куда более посредственным математиком и куда более хорошим епископом, он, возможно, принял бы на веру половину теорем, которые доказывал. Например, вместо того, чтобы исписывать тома евклидовыми математическими умозаключениями, чтобы доказать следующее великое предположение, которое можно было просто принять на веру: «Существует вездесущий Вечный разум, который знает и воспринимает все и демонстрирует нашему взору таким способом и согласно таким правилам, которые Он сам предопределил и которые именуются нами законами природы».

Интересно сравнить веру в науку Беркли XVIII века с декларацией антинаучной независимости Эддингтона в XX веке: «…все законы природы, традиционно именуемые фундаментальными, могут быть предугаданы полностью в результате эпистемологических рассуждений». К столь противоречивым выводам может, не слишком напрягаясь, привести философский дух математики, обитающий в разных умах с разницей в два века. Тезис одной эпохи совпадает с антитезисом другой в синтезе Гегеля, и в качестве результата появляется куда более комплексное и, главное, широкое знание.

Глава 25

Верующий и неверующий

Джироламо Саккери (1667–1733) произвел не больше впечатления, чем Беркли, на упрямцев с «волей к вере» (как сказано в классической фразе Уильяма Джеймса) в XVIII веке. Этот расчетливый век прозвали «веком разума», что весьма иронично, если вспомнить, как «Аналитик» Беркли был принят этими же разумниками. Попытка Саккери перетряхнуть догматизм того времени окончилась провалом отчасти из-за его темперамента, отчасти из-за условий строжайшей дисциплины, в которых ему приходилось работать.

Если величайший тест на веру потребовался бы от Саккери, ему следовало доказать то, во что он сам не верил. И вовсе не потому, что он будто был скептиком или циником, поскольку ни тем ни другим он не был. Он просто обладал природным даром верить во что он хотел. И пусть это наипростейшее объяснение его извилистой карьеры, но оно не единственно возможное, другие объяснения напросятся сами, когда мы проследим кружные пути его злосчастного шедевра.

Блестящий успех Саккери в борьбе за то, чтобы убедить самого себя в абсолютизме геометрии Евклида, – один из наиболее курьезных психологических парадоксов в истории разума. Обязанный поверить в систему Евклида как абсолютную истину, он создал еще две геометрии, каждая из которых имеет законченный вид и так же приемлема для повседневного применения, как и геометрия Евклида. Затем, каким-то чудом, он разуверился в обеих. Поскольку в действительности существует три заслуживающих доверия варианта (один из вариантов был геометрией Евклида, а два других – забракованной парой Саккери), получилось, что непоколебимо верующий человек признал возможной только геометрию Евклида. Но именно это он и хотел доказать. Как Превосходный Саул, который отправился искать ослов своего отца, а вернулся домой с королевством, Саккери в поисках Евклида в одиночку создал несколько вселенных. Но в отличие от Саула он вернулся с тем, за чем его послали.

О жизни Саккери известно мало, так как, возможно, мало что можно узнать из сухой формальной записи об успешном посвящении в члены Общества Иисуса или ордена иезуитов. Иезуиты, казалось, старались избавиться от персонализации, утопив ее в дисциплине своего ордена, и Саккери был, к сожалению, почти полностью деперсонализирован. Но прежде чем он умер в 1733 году, он успел рассказать о своем открытии, подрывающем все устои основополагающего направления развития глубоко безразличного мира. Труд Саккери по неевклидовой геометрии на время пропал из виду вместе с ним, всплыв на поверхность только спустя сто пятьдесят шесть лет после его кончины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней»

Представляем Вашему вниманию похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней»

Обсуждение, отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x