Числа Фибоначчи, подобно «предмету устремлений» их отношений – золотому сечению, – обладают поистине поразительными свойствами. Перечень математических закономерностей, связанных с числами Фибоначчи, буквально бесконечен. Приведу лишь несколько из них.
«Квадрат из прямоугольников»
Если составить сумму нечетного числа произведений последовательных чисел Фибоначчи, например, три произведения 1 × 1 + 1 × 2 + 2 × 3, эта сумма (в нашем случае 1 + 2 + 6 = 9) равна квадрату последнего числа Фибоначчи, которое вы задействовали в произведениях (в нашем случае 3 2 = 9). Другой пример: возьмем сумму семи произведений 1 × 1 + 1 × 2 + 2 × 3 + 3 × 5 + 5 × 8 + 8 × 13 + 13 × 21 = 441, и эта сумма будет равна квадрату последнего задействованного числа: 441 = 21 2. Подобным же образом сумма одиннадцати произведений 1 × 1 + 1 × 2 + 2 × 3 + 3 × 5 + 5 × 8 + 8 × 13 + 13 × 21 + 21 × 34 + 34 × 55 + +55 × 89 + 89 × 144 = 144 2. Это качество прекрасно видно из чертежа на рис. 30. Любое нечетное число прямоугольников, стороны которых равны последовательным числам Фибоначчи, прекрасно складывается в квадрат. На нашем чертеже таких прямоугольников семь.
Рис. 30
Греховное число одиннадцать
В драме «Пикколомини» немецкого поэта и драматурга Фридриха Шиллера астролог Сени заявляет: «Одиннадцать – число греховное. Оно зашло за десять – число господних заповедей» (« Elf ist die Sünde. Elfe Überschreiten die zehn Gebote ») ( Пер. Н. Славятинского ). Это еще средневековое суеверие. С другой стороны, у чисел Фибоначчи есть свойство, связанное с числом 11, которое отнюдь не грешно, а, наоборот, очень красиво.
Вычислим сумму первых десяти чисел Фибоначчи: 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143. Эта сумма нацело делится на 11 (143/11 = 13). То же самое верно для суммы любых десяти последовательных чисел Фибоначчи. Например, 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 + 4181 = 10 857, а 10 857 нацело делится на 11: 10 857/11 = 987. Внимательно поглядев на эти примеры, можно заметить еще кое-что. Сумма любых десяти последовательных чисел Фибоначчи всегда равна седьмому из этих чисел, умноженному на 11. Можете воспользоваться этим свойством, чтобы поражать зрителей скоростью, с которой вы сложите любые десять последовательных чисел Фибоначчи.
Месть шестидесятеричной системы?!
Как вы, должно быть, помните, древние вавилоняне по не вполне понятным причинам взяли за основание своей системы счисления число 60 (шестидесятеричная система). Число 60 играет свою роль и в последовательности Фибоначчи, хотя с вавилонской системой счисления это и не связано.
Числа Фибоначчи очень быстро возрастают, поскольку каждое следующее число получается сложением двух предыдущих. По сути дела, нам крупно повезло, что кролики не бессмертны, иначе они бы нас одолели. Пятое число Фибоначчи – всего-навсего 5, а 125-е – уже 59 425 114 757 512 643 212 875 125. Интересно, что число единиц повторяется периодически – через каждые 60 чисел. Например, второе число – 1, 62-е – 4 052 739 537 881 (тоже кончается на 1), 122-е – 14 028 366 653 498 915 298 923 761 – тоже кончается на 1, как и 182 и т. д. Подобным же образом 14-е число равно 377, 74-е – на 60 чисел дальше в последовательности – равно 1 304 969 544 928 657 и тоже кончается на 7 и т. д. Это свойство обнаружил в 1774 году французский математик, итальянец по рождению, Жозеф Луи Лагранж (1736–1813), из-под чьего пера вышло много трудов по теории чисел и механике (еще он изучал устойчивость солнечной системы). Последние две цифры, то есть 01, 01, 02, 03, 05, 08, 13, 21…, повторяются в последовательности с периодичностью 300, а последние три цифры – с периодичностью 1500 чисел. В 1963 году Стивен П. Геллер при помощи компьютера IBM 1620 доказал, что последние четыре цифры повторяются с периодичностью раз в 15 000, последние пять – с периодичностью раз в 150 000 и, наконец, повторение последних шести цифр появляется раз в 1 500 000; компьютеру потребовалось на поиск этой закономерности три часа работы. Геллер не задумался над тем фактом, что можно доказать общую теорему о периодичности последних цифр, и отметил: «Похоже, догадаться, каков будет следующий период, невозможно, однако, вероятно, можно написать новую программу для машины, которая допускает инициализацию в любом месте последовательности, и это сократит время работы компьютера настолько, чтобы получить новые данные». Однако вскоре после этого израильский математик Дов Ярден показал, что можно строго доказать, что для любого количества последних цифр, начиная с трех и больше, периодичность равна всего-навсего пятнадцать на десять в степени на единицу меньше, чем количество цифр (то есть для семи цифр это 15 × 10 6– то есть 15 миллионов).
Читать дальше
Конец ознакомительного отрывка
Купить книгу