11. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА
Метод эквивалентного генератора дает возможность упростить анализ и расчет электрических цепей в том случае, когда требуется определить ток, напряжение или мощность лишь одной ветви.
Рис. 14. Схема электрической цепи эквивалентного генератора
Предположим, что требуется найти ток I ветви amb некоторой электрической цепи (рис. 14а), остальные элементы которой сосредоточены в предела прямоугольника, представляющего собой активный двухполюсник А .
Согласно методу наложения ток I не изменится, если в данную ветвь ввести два источника, ЭДС которых Е 1 и Е Э равны и направлены в разные стороны (рис. 14б).
Ток I можно определить как разность двух токов: I = I Э + I 1,
где I 1 – ток, вызванный всеми источниками двухполюсника А и ЭДС Е 1 (рис. 14в);
I Э – ток, вызванный только ЭДС Е Э (рис. 14г).
Если выбрать ЭДС Е 1 таким образом, чтобы получить I 1 = 0, то ток I будет равен:
где r 0Э – эквивалентное сопротивление двухполюсника А относительно выводов а и b .
Так как при I 1 = 0 (рис. 14в) активный двухполюсник А будет работать относительно ветви amb в режиме холостого хода, то между выводами a и b установится напряжение холостого хода U = Ux и по второму закону Кирхгофа получим E 1 = I 1 r + Ux . Но по условию Е Э = Е 1, поэтому и Е Э = Ux . Учитывая это, формулу для определения тока I можно записать в такой форме:
В соответствии с последней формулой электрическая цепь (рис. 14а) может быть заменена эквивалентной цепью (рис. 14д), в которой Е Э = Ux и r 0Э следует рассматривать как ЭДС и внутреннее сопротивление некоторого эквивалентного генератора.
В результате возможности такой замены и возникло название изложенного метода.
Значения Е Э = Ux и r 0Э можно определить как расчетным, так и экспериментальным путем. Для расчетного определения Ux и r 0Э необходимо знать параметры элементов активного двухполюсника А и схему их соединения. При определении сопротивления r 0Э необходимо удалить из схемы двухполюсника все источники, сохранив все резистивные элементы, в том числе и внутренние сопротивления источников ЭДС. Внутренние сопротивления источников с указанными напряжениями следует принять равными нулю.
12. ПОЛУЧЕНИЕ СИНУСОИДАЛЬНОЙ ЭДС. ОСНОВНЫЕ СООТНОШЕНИЯ
Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока.
Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по законам, отличным от синусоидального, называются цепями несинусоидального тока.
Генераторы электрических станций переменного тока устроены так, что возникающая в их обмотках ЭДС изменяется по синусоидальному закону. СинусоидальнаяЭДС в линейных цепях, где содержатся резистивные, индуктивные и емкостные элементы, возбуждает ток, изменяющийся по закону синуса.
Возникающие при этом ЭДС самоиндукции в катушках и напряжения на конденсаторах, как это вытекает из выражений:
также изменяются по синусоидальному закону, так как производная синусоидальной функции есть функция синусоидальная. Напряжение на резистивном элементе будет так-же изменяться по синусоидальному закону: u = ir .
Целесообразность технического использования синусоидального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из(за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи.
Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.
Читать дальше