М. Бабаев - Гидравлика

Здесь есть возможность читать онлайн «М. Бабаев - Гидравлика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2008, ISBN: 2008, Издательство: Array Конспекты, шпаргалки, учебники «ЭКСМО», Жанр: Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гидравлика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гидравлика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Введите сюда краткую аннотацию

Гидравлика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гидравлика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3) здесь поток полностью турбулентный; в этой области трубы называются гидравлическими гладкими (шероховатость Δ меньше, чем толщина вязкого слоя δ в, то есть Δ < δ в).

В случае, когда Δ> δ в, труба считается «гидравлически шероховатой».

Характерно, что если для λ лам= f(Re –1), то в этом случае λ гд= f(Re – 0,25);

4) эта область находится на пути перехода потока к подвязкому слою: в этой области λ лам= (Re, Δ/r0). Как видно, коэффициент Дарси уже начинает зависеть от абсолютной шероховатости Δ;

5) эта область называется квадратичной областью (коэффициент Дарси не зависит от числа Рейнольдса, но определяется почти полностью касательным напряжением) и является пристенной.

Эту область называют автомодельной, т. е. не зависящей от Re.

В общем случае, как известно, коэффициент Шези

Формула Павловского где п коэффициент шероховатости R гидравлический - фото 154

Формула Павловского:

где п коэффициент шероховатости R гидравлический радиус При 01 R 3 м - фото 155

где п – коэффициент шероховатости;

R– гидравлический радиус.

При 0,1 ≤ R ≤ 3 м

причем при R 1 м 48 Неравномерное движение формула Вейсбаха и ее - фото 156

причем при R< 1 м

48 Неравномерное движение формула Вейсбаха и ее применение При равномерном - фото 157

48. Неравномерное движение: формула Вейсбаха и ее применение

При равномерном движении потери напора, как правило, выражаются формулой

где потери напора h прзависят от скорости потока она постоянна поскольку - фото 158

где потери напора h прзависят от скорости потока; она постоянна, поскольку, движение равномерное.

Следовательно, и формула (1) имеет соответствующие формы.

Действительно, если в первом случае

то во втором случае Как видно формулы 2 и 3 различаются только - фото 159

то во втором случае

Как видно формулы 2 и 3 различаются только коэффициентом сопротивления x - фото 160

Как видно, формулы (2) и (3) различаются только коэффициентом сопротивления x.

Формула (3) называется формулой Вейсбаха. В обоих формулах, как и в (1), коэффициент сопротивления – величина безразмерная, и в практических целях определяется, как правило, по таблицам.

Для проведения опыта по определению xм последовательность действий следующая:

1) должен быть обеспечен ход равномерности потока в исследуемом конструктивном элементе. Необходимо обеспечить достаточное удаление от входа пьезометров.

2) для установившегося движения вязкой несжимаемой жидкости между двумя сечениями (в нашем случае, это вход с x 1υ 1и выход с x 2υ 2), применяем уравнение Бернулли:

В рассматриваемых сечениях поток должен быть плавно изменяющимся Между - фото 161

В рассматриваемых сечениях поток должен быть плавно изменяющимся. Между сечениями могло бы произойти что угодно.

Поскольку суммарные потери напора

то находим потери напора на этом же участке 3 по формуле 5 находим что h - фото 162

то находим потери напора на этом же участке;

3) по формуле (5) находим, что h м= h пр– h l, после этого по формуле (2) находим искомый коэффициент

сопротивления

49 Местные сопротивления Что происходит после того как поток вошел с - фото 163

49. Местные сопротивления

Что происходит после того, как поток вошел с некоторым напором и скоростью в трубопровод.

Это зависит от вида движения: если поток ламинарный, то есть его движение описывается линейным законом, тогда его кривая – парабола. Потери напора при таком движении достигают (0,2 × 0,4) × (υ 2/ 2g).

При турбулентном движении, когда оно описывается логарифмической функцией, потери напора – (0,1 × 1,5) × (υ 2/2g).

После таких потерь напора движение потока стабилизируется, то есть восстанавливается ламинарный или турбулентный поток, каким и был входной.

Участок, на котором происходят вышеуказанные потери напора, восстанавливается по характеру, прежнее движение называется начальным участком.

А чему равна длина начального участка l нач.

Турбулентный поток восстанавливается в 5 раз быстрее, чем ламинарный, при одних и тех же гидравлических сопутствующих данных.

Рассмотрим частный случай, когда поток не сужается, как рассмотрели выше, но внезапно расширяется. Почему происходят потери напора при такой геометрии потока?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гидравлика»

Представляем Вашему вниманию похожие книги на «Гидравлика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гидравлика»

Обсуждение, отзывы о книге «Гидравлика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x