В реальном случае, при передаче речи или музыки, низкочастотный модулирующий сигнал содержит большое количество синусоидальных составляющих и для того, чтобы в месте приема можно было в точности воспроизвести передаваемый звук, канал связи должен пропустить все его составляющие от 20 гц и вплоть до 20 кгц. В этом случае передатчик займет полосу 40 кгц — верхняя граница будет на 20 кгц выше несущей, а нижняя на 20 кгц ниже. К сожалению, по ряду причин, в том числе из-за тесноты в эфире передавать такой широкий спектр частот оказывается невозможным — приходится идти на жертвы и резко ограничивать его. Так, в частности, для большинства радиостанций самая высокая из передаваемых низких частот — 5 кгц и при этом передатчик излучает полосу частот 10 кгц. Некоторой привилегией пользуются коротковолновые радиовещательные станции: каждой из них отводится полоса 16 кгц и таким образом можно передавать низкие частоты до 8 кгц.
Поскольку каждый передатчик излучает не одну частоту, а целую полосу, то уже не может быть речи о беспредельном сближении несущих частот. Для того, чтобы станции не налезали друг на друга, несущие соседних, то есть ближайших но частоте станций, должны отстоять одна от другой не менее, чем на 10 кгц. По существующему стандарту несущие частоты располагаются на «расстоянии» 10 кгц, причем даже в этом случае во избежание взаимных помех приходится применять сложную систему распределения частот, систему, которая строго учитывает мощности радиостанций, их радиус действия, район, в котором станция работает, ее расписание и условия распространения радиоволн.
Исходя из условия «10 кгц между несущими», можно подсчитать вместимость каждого радиовещательного диапазона. Так, например, в диапазоне ДВ могут одновременно работать, не мешая друг другу, 27 станций, СВ — больше ста, КВ — около тысячи и на УКВ — несколько тысяч станций. Если бы мы захотели расширить радиовещательный УКВ-диапазон, скажем, сделать его границами волны длиной в 10 м и 10 см, то в этом диапазоне можно было бы разместить около 300 000 обычных радиостанций.
Тут у вас, наверное, появился вопрос: а стоит ли вообще в подобной ситуации возиться с длинными, средними и даже с короткими волнами? Не лучше ли совсем забросить эти старые и тесные квартиры и все радиостанции перевести в просторный диапазон УКВ?
Как видите, с подобным переселением никто не торопится. Дело в том, что каждый из диапазонов имеет свои особенности, свои достоинства и специфические недостатки. Многие из этих особенностей связаны с условиями распространения радиоволн различной длины.
Когда-то мы отметили, что радиоволны, покинув передающую антенну, свободно перемещаются в пространстве и в итоге переносят какую-то часть энергии к антенне радиоприемника. Однако если внимательно проследить за процессом распространения радиоволн, то окажется, что перемещаются они не так-то уж свободно и, во всяком случае, встречают на своем пути множество разных, иногда непреодолимых препятствий.
Прежде всего зафиксируем такой очевидный факт — радиовещательный передатчик находится на Земле. На Земле находится также и подавляющее большинство радиослушателей. Это значит, что радиоволны могли бы проделать свой долгий путь над самой земной поверхностью. И они, конечно, легко проделали бы этот путь, если бы… если бы Земля не имела форму шара.
…Теплый летний вечер где-нибудь на черноморском побережье. Темнеет, в береговых поселках зажигаются огни, появляются огоньки и в море. Вот видно, как вышел из порта огромный залитый электрическим светом лайнер и, подмаргивая красными и зелеными глазками, направился в открытое море. Все дальше уходит от берега яркое световое пятно и вдруг резко исчезает из виду, как будто лайнер нырнул под воду. Все понятно — корабль скрылся за линией горизонта и его свет не доходит до берега. Не доходит потому, что Земля — шар, а световые лучи не искривляют своего пути, не хотят огибать кривизну земной поверхности.
Но всегда ли так прямолинейны световые лучи? Поставьте перед электрической лампочкой какой-нибудь небольшой предмет, скажем, иголку, и вы не обнаружите на стене никакой тени. Свет обошел препятствие, обогнул его. Это явление называется диффракцией. Нетрудно догадаться, что световые волны диффрагируют, огибают препятствие только в том случае, когда оно достаточно мало (в действительности в нашем примере происходят более сложные явления, однако диффракция световых лучей играет в них ведущую роль).
Читать дальше