Как вы уже, наверное, догадались, это и есть следствие резонанса — совпадения частоты генератора с собственной частотой контура. То же самое произойдет и при одновременном работе всех генераторов — контур выделит из общей массы и резко увеличит напряжение одного из них: именно того, который создает в контуре резонанс. Контур можно смело назвать резонансным фильтром, фильтром, подавляющим все колебания и пропускающим только одну частоту (рис. 27, б, в).
Рис. 27
Иногда в качестве иллюстрации явления резонанса рисуют качели, на которых уселся огромный бегемот, и маленькую девочку, раскачивающую эти качели. Девочка наверняка не знает, что такое резонанс (в детском саду об этом пока не рассказывают), но хорошо использует его. Она раскачивает качели в такт с их собственными колебаниями, и таким образом демонстрирует модель генератора, работающего на резонансной частоте. Эффект получается огромный — качели поднимаются так высоко, что у бедного бегемота, наверное, сердце уходит в пятки, а собравшаяся вокруг публика никак не может понять, откуда у маленькой девочки такая сила.
Способность контура из многих переменных токов выделять только тот, для которого выполняются условия резонанса, можно было бы иллюстрировать известной пословицей: «Свой свояка видит издалека». Однако сказать так о контуре, это значит в известной степени перехвалить его. Оказывается, контур «видит» не только «свояка» и уж во всяком случае не издалека. Для того чтобы это стало понятней, нам придется затронуть очень важный вопрос — посмотреть, как влияет на резонансные явления добротность колебательного контура.
Вы уже вскользь заметили, что при резонансе энергия генератора в основном тратится на преодоление потерь. Чем меньше потери в контуре, то есть, чем выше его добротность, тем сильнее генератор сможет раскачивать заряды, тем больше будет напряжение и ток в контуре во время резонанса (рис. 27, г). Для реальных контуров коэффициент добротности достигает 100, и при этом резонансное напряжение может оказаться в 100 раз больше напряжения генератора.
Но этим не ограничивается значение добротности. Вернемся к первому эксперименту, когда в контур был включен генератор и мы плавно изменяли его частоту. Теперь нам известно, что на определенной частоте, ну, скажем, на частоте 1000 кгц, наступит резонанс и напряжение на контуре резко возрастет. Но где же граница появления резонанса? Ведь частоту мы меняем плавно и прежде чем установить 1000 кгц должны пройти 900, 990 и даже 999. К тому же частота не обязательно должна выражаться целым числом — наш генератор будет давать переменные напряжения, которые только на тысячные доли герца будут отличаться от резонансной частоты. Так неужели же контур забракует все эти колебания и отзовется только на «полюбившиеся» 1000 кгц? Конечно, нет.
Точный выбор одной только частоты мог бы осуществить идеальный колебательный контур, в котором совершенно нет никаких потерь энергии. В реальном же случае по мере приближения к резонансной частоте напряжение нарастает постепенно и примерно так же медленно убывает, когда мы пройдем эту частоту. Для всякого контура можно нарисовать специальный график — резонансную кривую, которая покажет, насколько резко падает напряжение по мере удаления от резонансной частоты в ту и другую сторону. Форма этой кривой в огромной степени зависит от добротности контура — чем выше добротность, тем острее резонансная кривая, тем резче ослабляет контур переменные напряжения, частота которых близка к резонансной (рис. 27, г).
Общая идея использования колебательного контура для выделения сигнала одной единственной станции примерно ясна. Контур можно включить в цепь антенны, а его индуктивность и емкость подобрать с таким расчетом, чтобы резонанс получался как раз на нужной нам частоте. Это значит, что контур во много раз повысит напряжение принимаемой станции и после детектирования мы услышим ее намного громче других. Когда же мы захотим принять другую станцию, то просто изменим один из параметров контура, например, увеличим или уменьшим его емкость. При этом, как уже отмечалось, изменится частота собственных колебаний, а значит, и частота, на которой в контуре будет резонанс. Меняя емкость или индуктивность, мы сможем легко перестраиваться с одной станции на другую (рис. 28).
Читать дальше