Рис. 6.61. Измерение тока в шине питания.
R 2 — резистор для съема тока, желательно с малой температурной зависимостью. Для очень больших токов или прецизионной точности следует использовать четырехпроводной резистор, специально предназначенный для измерений тока - измерительные проводники подключены в самом резисторе. В этом случае снятое напряжение не зависит от сопротивления соединения с токонесущими проводниками, которые на схеме для ясности показаны жирными линиями.
В этой схеме необходимо использовать операционный усилитель, который имеет диапазон входных синфазных сигналов вплоть до положительного напряжения питания (307, 355 и 441 обладают этим достоинством), если, конечно, вы не питаете операционный усилитель от еще более положительного вспомогательного напряжения. МОП-транзистор в этой схеме можно было бы заменить на проходной p-n-p -транзистор, однако, поскольку выходной ток будет тогда включать ток базы, придется использовать соединение Дарлингтона для минимизации ошибки. Обратите внимание на то, что вместо p -канального транзистора можно использовать n -канальный выходной транзистор (подключенный как повторитель), если поменять подключение на входе операционного усилителя. Однако в этом случае источник тока будет иметь нежелательно низкий выходной импеданс на частотах, близких к частоте f T контура операционного усилителя, поскольку выход является по-существу истоковым повторителем. При проектировании источников тока часто допускают подобную ошибку, так как анализ по постоянному току показывает хорошие параметры.
Измерение тока в возвратной цепи.Хорошим способом построения прецизионного источника тока является считывание напряжения на прецизионном резисторе, включенном последовательно с нагрузкой. В этом случае легче исключить ошибки источника тока, связанные с током базы; базовый ток должен проходить либо и через нагрузку, и через усилитель считывания, либо не должен проходить ни через то, ни через другое. Для того чтобы удовлетворить этому требованию, необходимо «подвесить» нагрузку или источник питания, по крайней мере, к напряжению, равному падению напряжения на резисторе для измерения тока. На рис. 6.62 показаны две схемы, использующие плавающую нагрузку.
Рис. 6.62. Измерение тока в возвратной цепи.
Первая схема — это обычная последовательная проходная схема, в которой сигнал ошибки получается из падения напряжения на небольшом резисторе, включенном на возвратном пути от нагрузки к земле. Сильноточный путь здесь также отмечен жирной линией. В данном случае соединение Дарлингтона используется не для того, чтобы избежать ошибки, связанной с базовым током (измеряется реальный ток нагрузки), а чтобы снизить ток управления до нескольких миллиампер, поэтому в качестве усилителя ошибки можно использовать обычный операционный усилитель. Измерительный резистор должен быть прецизионным мощным резистором с малой температурной зависимостью и желательно четырехпроводным. Во второй схеме транзистор регулирования Т 2 находится в возвратной цепи земли сильноточного источника питания. Преимущество такого расположения состоит в том, что коллектор транзистора подключен к земле, поэтому можно не беспокоиться относительно изоляции корпуса транзистора от теплоотвода.
В обеих схемах R изм выбирается из расчета падения на нем около вольта при типовых рабочих токах; значение резистора — это компромисс между ошибками смещения на входе операционного усилителя, с одной стороны, и сочетанием уменьшенного размаха источника тока и увеличенной мощностью рассеяния, с другой. Если схема предназначается для работы в большом диапазоне выходных токов, то R изм , по-видимому, целесообразно выполнить в виде набора прецизионных мощных резисторов с выбором нужного резистора с помощью переключателя.
Заземленная нагрузка.Если важно, чтобы нагрузка была подключена к земле, то можно использовать схему с плавающим источником. На рис. 6.63 показано два примера.
Рис. 6.63. Источники тока для заземленных нагрузок, использующие плавающие высоковольтные источники питания.
Читать дальше