Обозначение цифрового мультиплексора показано на рис. 35–14.
Рис. 35–14. Логическое обозначение восьмивходового мультиплексора.
На рис. 35–15 изображено обозначение 16-входового мультиплексора. Заметим, что мультиплексор имеет четыре линии управления для активации шестнадцати входов данных.
Рис. 35–15. Логическое обозначение шестнадцативходового мультиплексора.
Кроме селекции потоков данных, мультиплексоры широко используются для преобразования данных из параллельного кода в последовательный. Двоичное слово, представленное параллельным кодом, подается на вход мультиплексора. Подавая на управляющие входы последовательность разрешающих кодов, можно получить на выходе последовательное представление параллельного двоичного слова, поданного на вход.
На рис. 35–16 изображена схема преобразования данных из параллельного кода в последовательный с помощью мультиплексора. Трехразрядное двоичное слово со счетчика используется для выбора нужного входа. Параллельное восьмиразрядное слово подается на вход мультиплексора.
При увеличении двоичного числа на выходе счетчика последовательно выбираются входы мультиплексора. На выходе мультиплексора появляется последовательное двоичное слово, равное параллельному, поданному на вход.
Рис. 35–16. Использование мультиплексора для преобразования данных, представленных параллельным кодом, в последовательный.
35-3. Вопросы
1. Что такое мультиплексор?
2. Как используются мультиплексоры?
3. Нарисуйте логическую схему мультиплексора?
4. С данными каких типов имеют дело мультиплексоры?
5. Как использовать мультиплексор для преобразования данных из параллельного кода в последовательный?
35-4. АРИФМЕТИЧЕСКИЕ СХЕМЫ
Сумматор
Сумматор — это главный вычислительный элемент цифрового компьютера. Компьютер выполняет всего несколько подпрограмм, в которых не используется сумматор. Сумматоры рассчитаны на работу либо в параллельных, либо в последовательных цепях. Поскольку параллельный сумматор работает быстрее и используется чаще, он будет рассмотрен более детально.
Для того чтобы понять, как работает сумматор, необходимо вспомнить правила сложения:
На рис. 35–17 изображена таблица истинности, основанная на этих правилах. Заметим, что греческая буква сигма ( Σ ) используется для обозначения суммы столбца. Столбец переноса обозначен С 0. Эти обозначения используются в промышленности при описании сумматора.
Рис. 35–17. Таблица истинности, составленная с помощью правил сложения.
Столбец суммы в таблице истинности совпадает со столбцом выхода в таблице истинности для элемента исключающее ИЛИ (рис. 35–18). Столбец переноса совпадает со столбцом выхода в таблице истинности для элемента И (рис. 35–19).
Рис. 35–18. Таблица истинности для элемента исключающее ИЛИ.
Рис. 35–19. Таблица истинности для элемента И.
На рис. 35–20 изображены элементы И и исключающее ИЛИ, соединенные параллельно для того, чтобы обеспечить логическую функцию, необходимую для одноразрядного сложения. Выход переноса ( С 0) обеспечивается элементом И, а выход суммы ( Σ ) обеспечивается элементом исключающее ИЛИ. Входы А и В соединены со входами элемента И и элемента исключающее ИЛИ. Таблица истинности для этой цепи такая же, как и таблица истинности, полученная с использованием правил двоичного сложения (рис. 35–17).
Рис. 35–20. Схема полусумматора.
Поскольку эта цепь не учитывает какие-либо переносы, она называется полусумматором. Он может быть использован в качестве сумматора младшего разряда при сложении двоичных чисел.
Читать дальше