Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.

Здесь есть возможность читать онлайн «Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: sci_popular, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

До предела чисел. Эйлер. Математический анализ.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «До предела чисел. Эйлер. Математический анализ.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.

До предела чисел. Эйлер. Математический анализ. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «До предела чисел. Эйлер. Математический анализ.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Знак"!"обозначает ноль. Если мы сосчитаем количество букв в словах, то получим следующую последовательность:

271828182845904523 536028 747135 266249 7757,

которая соответствует первым 40 цифрам числа е.

ПОСТОЯННАЯ ЭЙЛЕРА — МАСКЕРОНИ

Существуют три математические константы, которые резко выделяются на общем фоне и так или иначе связаны с Эйлером. Первая — это знаменитое число я, вторая — е. Третья обозначается греческой буквой у, и хотя Эйлер выделил ее уже в 1734 году, через три года после нахождения числа е, он делит это открытие с итальянским математиком Лоренцо Маскерони, так что у называют постоянной Эйлера —Маскерони. По мнению некоторых специалистов, это не совсем справедливо, поскольку самая большая заслуга Маскерони состояла в том, что в 1790 году он вычислил 32 ее знака, сделав при этом три ошибки: в 19-м, 20-м и 21-м знаках.

γ — сугубо арифметическая константа. Если мы рассмотрим древний гармонический ряд

Σ n=1 ∞1/n = 1 + 1/2 + 1/2 + 1/4 + ... + 1/n + ...,

то увидим, что он расходится, то есть предел его суммы стремится к ∞ (первое строгое доказательство этого приписывается Якобу Бернулли).

Эйлеру пришла в голову мысль сравнить возрастание этого расходящегося ряда с In n. Если провести вычитание

Σ n=1 ∞1/k = ln(n)

шаг за шагом, мы получим:

1 - ln1 = 1

1 + 1/2 - ln2 = 0,8068528...

1 + 1/2 + 1/3 - ln3 = 0,734721...

1 + 1/2 + 1/3 + 184 - In4 = 0,6970389...

Эта разность стабилизируется и в пределе дает постоянную величину:

γ = lim n→∞[Σ k=1 n1/k - ln n] = 0,57721566...

Целью Эйлера было найти способ описать степень роста гармонического ряда, и ученый пришел к заключению, что он логарифмический. Он обозначил эту постоянную заглавной буквой С, а знак греческой буквы γ, видимо, ввел Маскерони (1790). В 1736 году Эйлер высчитал 19 цифр этой постоянной, используя собственную формулу, так называемые числа Бернулли, Bn; если бы он попытался классическим путем сложить значения гармонического ряда и вычесть логарифм, то потерпел бы поражение, даже несмотря на то что был гением в вычислениях: ряд сходится слишком медленно.

Немецкий ученый Вейерштрасс открыл, что определение Г(х), предложенное Эйлером, дает производную

Г’(1) = -γ,

что позволяет установить неожиданную связь между гамма- функцией и постоянной Эйлера — Маскерони.

О константе γ почти ничего неизвестно, мы даже не знаем, рациональное это число или иррациональное и, разумеется, трансцендентное ли оно. Нам известно только, что если оно окажется рациональным — а большинство специалистов в это не верят, — то его знаменатель будет состоять из 244 663 цифр десятичной системы исчисления. Если воспроизвести это число, оно займет почти всю эту книгу.

Постоянная γ часто используется в анализе (например, в так называемых функциях Бесселя), а также в квантовой механике, особенно в перенормировке диаграмм Фейнмана, имеющих фундаментальное значение в электродинамике.

Однако не нужно далеко ходить, чтобы обнаружить γ. Если мы начнем собирать наклейки, прилагающиеся к жвачкам или шоколадкам, то наше хобби будет совершенно эйлеровским. Если в коллекции всего n наклеек, нам придется купить примерно N товаров, чтобы собрать их все:

N = n(1 + 1/2 + 1/3 + ... + 1/n).

ЛОРЕНЦО МАСКЕРОНИ

Первым призванием Лоренцо Маске- рони, итальянского священника и математика (1750-1800), была поэзия.

Он не был горячим сторонником ни одной из существовавших тогда политических партий, но в общем его можно было охарактеризовать как франкофила. Поэтому в 1797 году его назначили депутатом в Милане, а затем отправили в Париж для разработки новой десятичной метрической системы вместе с Лежандром. Маске- рони больше не смог вернуться в Милан, оккупированный австрийскими войсками, и умер на следующий год.

В 1797 году он опубликовал свой шедевр в стихах — "Геометрия циркуля", — посвященный его другу Наполеону, который тоже увлекался математикой, о чем свидетельствует теорема, названная его именем.

В этой работе Маскерони доказал, что строгое требование древних греков делать геометрические построения только с помощью линейки и циркуля не такое уж обязательное: достаточно одного циркуля. Этот тезис, сегодня кажущийся нам очевидным, был удивительным для того времени. Первым это открытие сделал и опубликовал в Euclides Danicus ("Датский Евклид") в 1672 году датский ученый Георг Мор (1640-1697), но Маскерони об этом не знал. Свое право на бессмертие в математике Маскерони завоевал с помощью Эйлера своей книгой Adnotationes ad calculum integrate Euleri ("Заметки к интегральному исчислению Эйлера"), в которой нет существенных открытий, но содержится знаменитая постоянная γ. С этого момента у стала называться постоянной Эйлера — Маскерони.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «До предела чисел. Эйлер. Математический анализ.»

Представляем Вашему вниманию похожие книги на «До предела чисел. Эйлер. Математический анализ.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «До предела чисел. Эйлер. Математический анализ.»

Обсуждение, отзывы о книге «До предела чисел. Эйлер. Математический анализ.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x