Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.

Здесь есть возможность читать онлайн «Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: sci_popular, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

До предела чисел. Эйлер. Математический анализ.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «До предела чисел. Эйлер. Математический анализ.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.

До предела чисел. Эйлер. Математический анализ. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «До предела чисел. Эйлер. Математический анализ.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Один из самых интересных вопросов из наследия Ферма — числа, которые были названы его именем, числа Ферма. Они обозначаются буквой F и определяются формулой

F n= 2 2n+1.

При n = 0,1,2,3,4 получим

F0 = 2 20 + 1 = 2 1+ 1 = 3

F1 = 2 21 +1 = 2 2+ 1 = 4 + 1 = 5

F2 = 2 2 2 + 1 = 2 4+ 1 = 16 + 1 = 17

F3 = 2 23 + 1 = 2 5+ 1 = 256 + 1 = 257

F4 = 2 24 + 1 = 2 16+ 1 = 65 536 + 1 = 65 637.

Все они являются простыми числами. Следующее число Ферма выглядит так:

F5 = 2 25 + 1 = 2 32+1 = 4 294 967 296 + 1 = 4 294 967 297.

Было бы логично предположить, что оно, как и предыдущие, является простым. По стандартам того времени более рискованно, хотя и не намного, было выдвинуть гипотезу (как сделал Гольдбах) о том, что все эти числа простые, подтверждая тем самым мнение самого Ферма. Гольдбах сообщил Эйлеру об этой задаче в 1729 году, а в 1732-м тот уже нашел ее решение: F 5— не простое число, а составное:

F5 = 4 294 967 297 = 641 • 6700 417.

Первой реакцией на этот результат было изумление. Ведь чтобы провести факторизацию этого числа, деля его на 2,3,5,7, 11,13 и так далее, продолжая перебирать бесконечную последовательность простых чисел, требовались колоссальные усилия.

ПЬЕР ДЕ ФЕРМА

Ферма был юристом по профессии и занимался математикой исключительно как хобби, за что получил прозвище "король любителей". Он внес решающий вклад в создание аналитической геометрии, а также в развитие теории вероятностей и оптики, изучал отражение и преломление света и отнес эти явления к максимумам и минимумам, заложив таким образом основы дифференциального исчисления. Наибольшую известность Ферма принесли его исследования о теории чисел, в которых ярко проявились его удивительные способности и необычные методы работы. Обычно он не записывал свои рассуждения отдельно, а делал, пока хватало места, пометки на полях книг, которые читал. Всемирной известностью он обязан появлению теоремы, гласящей, что "для n > 2 не существует таких целых положительных чисел х, у, z, не равных нулю, для которых справедливо х n+у n=z n". Она известна как Великая теорема Ферма, и долгое время у нее не было доказательства. Ферма утверждал — хотя, вполне возможно, ошибочно, — что однажды во время чтения он нашел превосходное доказательство, но на полях книги не было достаточно места для его записи. Теорема была доказана в 1995 году Эндрю Уайлсом.

Если же рассмотреть приемы Эйлера подробней можно понять его метод и - фото 10

Если же рассмотреть приемы Эйлера подробней, можно понять его метод и, одновременно с этим, гениальность ученого. Постепенно, следуя по скользкому пути деления, Эйлер пришел к выводу — совсем не простому,— что любой делитель F 5должен иметь вид 64n + 1. Таким образом, ему больше не надо было проверять один за другим все простые делители, а только числа 65 (n = 1), 129 (n = 2), 193 (n = 3) и так далее, вычеркивая те, которые простыми не являлись. При n - 10 подсчеты дают 64 -10 + 1 = 641, что является точным делителем.

На сегодняшний день не найдено ни одного другого простого числа Ферма. Все новые, что нам известны,— это составные числа. Было доказано, что начиная с F 5до F 32— а это огромное количество — нет ни одного простого числа. Но это не означает, что они никогда не будут обнаружены. Вопрос об их существовании — всего лишь гипотеза, а в математике гипотезы считаются верными или ложными, только если находится их доказательство или опровержение.

КРЕЩЕНИЕ ЧИСЛА

Параллельно с работой над числами Ферма и все так же в рамках обширной переписки с Гольдбахом Эйлер дал имя математической константе, которая, как мы уже говорили в предыдущей главе, впоследствии стала основой его исследований по теории чисел: это постоянная е. Впервые она появилась под таким обозначением в одном из писем 1731 года. Вне всяких сомнений, это самая известная постоянная после л. Ее приблизительное значение следующее:

е=2,71828182845904523536028747135266249775724709369995...

Сегодня известно более триллиона знаков е после запятой. Хотя Эйлер дал постоянной имя и использовал ее в самых разных областях, он не был ее первооткрывателем в строгом смысле этого слова: е появилась гораздо раньше, но под другим именем и "в тайне", как мы увидим ниже.

Число е родом из области логарифмов, как подчеркивал Эйлер. Эта связь, которую мы подробнее рассмотрим в приложении 1, ускользала от математиков на протяжении века. В защиту современников Эйлера можно сказать, что постоянная е с течением времени зарекомендовала себя как особенно неуловимая.

Одним из первых к ней приблизился Грегуар де Сен- Венсан (1584-1667), который в 1647 году обнаружил равностороннюю гиперболу, соответствующую уравнению у - 1/x, ее график в декартовой системе координат изображен на этой странице. Сен-Венсан вычислил площадь между 1 и любой другой точкой t на горизонтальной оси говоря современным языком, это площадь криволинейной трапеции между 1 и t.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «До предела чисел. Эйлер. Математический анализ.»

Представляем Вашему вниманию похожие книги на «До предела чисел. Эйлер. Математический анализ.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «До предела чисел. Эйлер. Математический анализ.»

Обсуждение, отзывы о книге «До предела чисел. Эйлер. Математический анализ.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x